In this article, the block scheme and metrological characteristics of the State primary standard of the mass (molar) fraction and mass (molar) concentration of the component in the liquid and solid substances and mate...In this article, the block scheme and metrological characteristics of the State primary standard of the mass (molar) fraction and mass (molar) concentration of the component in the liquid and solid substances and materials based on coulometric titration GET 176-2010 are given. Primary reference materials certified by coulometric titration in the Ural Scientific and Research Institute for Metrology include eight certified reference materials (CRMs) of pure solid substances (mostly salts of sodium or potassium) and one hydrochloric acid solution CRM. The metrological characteristics of these reference materials and the scheme of their application in titrimetric analysis are shown. The expanded uncertainty of the certified value (mass fraction for the solid substances or molar concentration for the solution) is in the range from 0.018% to 0.05%. Information about two primary reference materials of high purity iron and lead nitrate certified by controlled-potential coulometry with expanded uncertainty from 0.04% to 0.07% is also given.展开更多
Anodic particle coulometry (APC) is a recently established method of sizing individual metal nanoparticles by oxidising them during their impact on a micro electrode. Here it is demonstrated that the application of ...Anodic particle coulometry (APC) is a recently established method of sizing individual metal nanoparticles by oxidising them during their impact on a micro electrode. Here it is demonstrated that the application of APC can be extended to sizing of metal oxide nanoparticles, such as Fe304 magnetite nanoparticles. Additionally, a new route to electrochemical nanoparticle sizing is introduced-- cathodic particle coulometry (CPC). This method uses the reduction of impacting nanoparticles, e.g., metal oxide nanoparticles, and is demonstrated to yield correct size information for Fe304 nanoparticles. The combination of these two independent electrochemical methods of nanoparticle sizing, allows for purely electrochemical sizing of single nanoparticles and simultaneous verification of the obtained results.展开更多
文摘In this article, the block scheme and metrological characteristics of the State primary standard of the mass (molar) fraction and mass (molar) concentration of the component in the liquid and solid substances and materials based on coulometric titration GET 176-2010 are given. Primary reference materials certified by coulometric titration in the Ural Scientific and Research Institute for Metrology include eight certified reference materials (CRMs) of pure solid substances (mostly salts of sodium or potassium) and one hydrochloric acid solution CRM. The metrological characteristics of these reference materials and the scheme of their application in titrimetric analysis are shown. The expanded uncertainty of the certified value (mass fraction for the solid substances or molar concentration for the solution) is in the range from 0.018% to 0.05%. Information about two primary reference materials of high purity iron and lead nitrate certified by controlled-potential coulometry with expanded uncertainty from 0.04% to 0.07% is also given.
文摘Anodic particle coulometry (APC) is a recently established method of sizing individual metal nanoparticles by oxidising them during their impact on a micro electrode. Here it is demonstrated that the application of APC can be extended to sizing of metal oxide nanoparticles, such as Fe304 magnetite nanoparticles. Additionally, a new route to electrochemical nanoparticle sizing is introduced-- cathodic particle coulometry (CPC). This method uses the reduction of impacting nanoparticles, e.g., metal oxide nanoparticles, and is demonstrated to yield correct size information for Fe304 nanoparticles. The combination of these two independent electrochemical methods of nanoparticle sizing, allows for purely electrochemical sizing of single nanoparticles and simultaneous verification of the obtained results.