The axon initial segment(AIS)is a specialized structure that controls neuronal excitability via action potential(AP)generation.Currently,AIS plasticity with regard to changes in length and location in response to neur...The axon initial segment(AIS)is a specialized structure that controls neuronal excitability via action potential(AP)generation.Currently,AIS plasticity with regard to changes in length and location in response to neural activity has been extensively investigated,but how AIS diameter is regulated remains elusive.Here we report that COUP-TFI(chicken ovalbumin upstream promotor-transcription factor 1)is an essential regulator of AIS diameter in both developing and adult mouse neocortex.Either embryonic or adult ablation of COUP-TFI results in reduced AIS diameter and impaired AP generation.Although COUP-TFI ablations in sparse single neurons and in populations of neurons have similar impacts on AIS diameter and AP generation,they strengthen and weaken,respectively,the receiving spontaneous network in mutant neurons.In contrast,overexpression of COUP-TFI in sparse single neurons increases the AIS diameter and facilitates AP generation,but decreases the receiving spontaneous network.Our findings demonstrate that COUP-TFI is indispensable for both the expansion and maintenance of AIS diameter and that AIS diameter fine-tunes action potential generation and synaptic inputs in mammalian cortical neurons.展开更多
基金This work was supported by the National Natural Science Foundation of China(81870734)the Shanghai Municipal Government and ShanghaiTech University,China.
文摘The axon initial segment(AIS)is a specialized structure that controls neuronal excitability via action potential(AP)generation.Currently,AIS plasticity with regard to changes in length and location in response to neural activity has been extensively investigated,but how AIS diameter is regulated remains elusive.Here we report that COUP-TFI(chicken ovalbumin upstream promotor-transcription factor 1)is an essential regulator of AIS diameter in both developing and adult mouse neocortex.Either embryonic or adult ablation of COUP-TFI results in reduced AIS diameter and impaired AP generation.Although COUP-TFI ablations in sparse single neurons and in populations of neurons have similar impacts on AIS diameter and AP generation,they strengthen and weaken,respectively,the receiving spontaneous network in mutant neurons.In contrast,overexpression of COUP-TFI in sparse single neurons increases the AIS diameter and facilitates AP generation,but decreases the receiving spontaneous network.Our findings demonstrate that COUP-TFI is indispensable for both the expansion and maintenance of AIS diameter and that AIS diameter fine-tunes action potential generation and synaptic inputs in mammalian cortical neurons.