Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beac...Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beaches. For the far fewer number of studies conducted on inland and urban locations, the site-specific focus has primarily been surveys along the length of streets. The present study is the first to specifically assess the standing stock (i.e., moment-in-time) of littered face masks for the entire surface area of urban parking lots. The density of face masks in 50 parking lots in a Canadian coastal town (0.00054 m2 ± 0.00051 m2) was found to be significantly greater than the background level of littering of town streets. Face mask density was significantly related to visitation “usage” of parking lots as gauged by the areal size of the lots and of their onsite buildings, as well as the number of vehicles present. Neither parking lot typology nor estimates of inferred export (various measures of wind exposure) and entrapment (various metrics of obstruction) of face masks had a significant influence on the extent of whole-lot littering. In consequence, modelling of the potential input of mask-derived microplastics to the marine environment from coastal communities can use the areal density of face masks found here in association with the total surface area of lots for individual municipalities as determined through GIS analysis.展开更多
文摘Despite cities being recognized as being potential sources of microplastic pollution to the wider environment, most surveys of COVID-19 plastic-based litter have been undertaken through linear transects of marine beaches. For the far fewer number of studies conducted on inland and urban locations, the site-specific focus has primarily been surveys along the length of streets. The present study is the first to specifically assess the standing stock (i.e., moment-in-time) of littered face masks for the entire surface area of urban parking lots. The density of face masks in 50 parking lots in a Canadian coastal town (0.00054 m2 ± 0.00051 m2) was found to be significantly greater than the background level of littering of town streets. Face mask density was significantly related to visitation “usage” of parking lots as gauged by the areal size of the lots and of their onsite buildings, as well as the number of vehicles present. Neither parking lot typology nor estimates of inferred export (various measures of wind exposure) and entrapment (various metrics of obstruction) of face masks had a significant influence on the extent of whole-lot littering. In consequence, modelling of the potential input of mask-derived microplastics to the marine environment from coastal communities can use the areal density of face masks found here in association with the total surface area of lots for individual municipalities as determined through GIS analysis.