In several countries,the ageing population contour focuses on high healthcare costs and overloaded health care environments.Pervasive health care monitoring system can be a potential alternative,especially in the COVI...In several countries,the ageing population contour focuses on high healthcare costs and overloaded health care environments.Pervasive health care monitoring system can be a potential alternative,especially in the COVID-19 pandemic situation to help mitigate such problems by encouraging healthcare to transition from hospital-centred services to self-care,mobile care and home care.In this aspect,we propose a pervasive system to monitor the COVID’19 patient’s conditions within the hospital and outside by monitoring their medical and psychological situation.It facilitates better healthcare assistance,especially for COVID’19 patients and quarantined people.It identies the patient’s medical and psychological condition based on the current context and activities using a fuzzy context-aware reasoning engine based model.Fuzzy reasoning engine makes decisions using linguistic rules based on inference mechanisms that support the patient condition identication.Linguistics rules are framed based on the fuzzy set attributes belong to different context types.The fuzzy semantic rules are used to identify the relationship among the attributes,and the reasoning engine is used to ensure precise real-time context interpretation and current evaluation of the situation.Outcomes are measured using a fuzzy logic-based context reasoning system under simulation.The results indicate the usefulness of monitoring the COVID’19 patients based on the current context.展开更多
目的:分析新型冠状病毒感染(COVID-19)相关心律失常的文献,探索该领域的研究现状、热点并预测未来的趋势,为后来的研究者提供借鉴。方法:选择Web of Science的核心合集数据库,每项研究都进行了文献计量和视觉分析,使用CiteSpace和VOSvie...目的:分析新型冠状病毒感染(COVID-19)相关心律失常的文献,探索该领域的研究现状、热点并预测未来的趋势,为后来的研究者提供借鉴。方法:选择Web of Science的核心合集数据库,每项研究都进行了文献计量和视觉分析,使用CiteSpace和VOSviewer软件生成知识图谱。结果:共鉴定出768篇文章,发文涉及美国、意大利和中国为首的319个国家/地区和4 366个机构,领先的研究机构是梅奥诊所和哈佛医学院。New England Journal of Medicine是该领域最常被引用的期刊。在6 687位作者中,Arbelo Elena撰写的研究最多,Guo T被共同引用的次数最多,心房纤颤是最常见的关键词。结论:随着COVID-19的暴发,对COVID-19所致新发/进行性心律失常事件的研究蓬勃发展,未来的研究者可能会对COVID-19感染后新发或遗留的快速性心律失常/缓慢性心律失常的发生机制进行进一步的探索。展开更多
目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清...目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清零”策略防控效果提供科学依据。方法考虑到西安市本轮疫情存在大量的无症状感染者、依时变化的参数以及采取的管控举措等特点,构建具有阶段性防控措施的时变SEAIQR模型。考虑到COVID-19疫情数据的时序性特征及它们之间的非线性关系,构建深度学习Dropout-LSTM模型。选用2021年12月9日-2022年1月31日西安市新增确诊病例数据进行拟合,用2022年2月1日-2022年2月7日数据评估预测效果,计算有效再生数(R_(t))并评价不同参数对疫情发展的影响。结果SEAIQR模型预测的新增确诊病例拐点预计在2021年12月26日出现,约为176例,疫情将于2022年1月24日实现“动态清零”,模型R^(2)=0.849。Dropout-LSTM模型能够体现数据的时序性与非线性特征,预测出的新增确诊病例数与实际情况高度吻合,R^(2)=0.937。Dropout-LSTM模型的MAE和RMSE均较SEAIQR模型低,说明预测结果更为理想。疫情暴发初期,R 0为5.63,自实施全面管控后,R_(t)呈逐渐下降趋势,直到2021年12月27日降至1.0以下。随着有效接触率不断缩小、管控措施的提早实施及免疫阈值的提高,新增确诊病例在到达拐点时的人数将会持续降低。结论建立的Dropout-LSTM模型实现了较准确的疫情预测,可为COVID-19疫情“动态清零”防控决策提供借鉴。展开更多
目的分析COVID-19疫情暴发前后不同国家经季节和日历调整后的生育率(seasonally and calendar adjusted fertility rate,SAFR)趋势的变化及其影响因素。方法使用国际人类生育力数据库(Human Fertility Database,HFD)中28个国家自2012年...目的分析COVID-19疫情暴发前后不同国家经季节和日历调整后的生育率(seasonally and calendar adjusted fertility rate,SAFR)趋势的变化及其影响因素。方法使用国际人类生育力数据库(Human Fertility Database,HFD)中28个国家自2012年1月至2022年12月的月度SAFR数据,以2020年12月(2020年3月疫情暴发起点加9个月妊娠过程)为节点划分为疫情前(2012.1-2020.11)和疫情后(2020.12-2022.12)进行比较,使用中断时间序列方法分析各国疫情前后的SAFR趋势(短期波动和长期趋势)是否发生变化,使用秩和检验分析疫情前SAFR、人均GDP、公共卫生和社会措施(public health and social measures,PHSM)和失业率是否与SAFR趋势变化有关。结果疫情后28个国家中19个国家的SAFR出现短期下降,随后反弹。对于长期趋势,2个国家由下降趋势转为上升趋势,8个国家由上升趋势转为下降趋势,6个国家的SAFR保持不变。SAFR变化率下降主要集中在部分中欧国家以及地中海西岸的国家,而SAFR变化率增加的国家主要分布在北欧以及西欧地区。SAFR无短期波动的国家疫情前的SAFR低于有短期波动的国家(P=0.041),SAFR变化率下降国家的疫情前SAFR(P=0.005)与人均GDP(P=0.027)均低于SAFR变化率上升国家。未发现SAFR短期波动或长期趋势与PHSM严重程度指数或失业率存在关联。结论COVID-19疫情对28个国家的SAFR造成了不同的短期和长期影响,特别是经济水平和疫情前SAFR相对较低的国家可能更易遭到进一步打击。COVID-19疫情对各国人口的更长期影响值得进一步关注。展开更多
基金funding by the University of Malta’s Internal Research Grants。
文摘In several countries,the ageing population contour focuses on high healthcare costs and overloaded health care environments.Pervasive health care monitoring system can be a potential alternative,especially in the COVID-19 pandemic situation to help mitigate such problems by encouraging healthcare to transition from hospital-centred services to self-care,mobile care and home care.In this aspect,we propose a pervasive system to monitor the COVID’19 patient’s conditions within the hospital and outside by monitoring their medical and psychological situation.It facilitates better healthcare assistance,especially for COVID’19 patients and quarantined people.It identies the patient’s medical and psychological condition based on the current context and activities using a fuzzy context-aware reasoning engine based model.Fuzzy reasoning engine makes decisions using linguistic rules based on inference mechanisms that support the patient condition identication.Linguistics rules are framed based on the fuzzy set attributes belong to different context types.The fuzzy semantic rules are used to identify the relationship among the attributes,and the reasoning engine is used to ensure precise real-time context interpretation and current evaluation of the situation.Outcomes are measured using a fuzzy logic-based context reasoning system under simulation.The results indicate the usefulness of monitoring the COVID’19 patients based on the current context.
文摘目的:分析新型冠状病毒感染(COVID-19)相关心律失常的文献,探索该领域的研究现状、热点并预测未来的趋势,为后来的研究者提供借鉴。方法:选择Web of Science的核心合集数据库,每项研究都进行了文献计量和视觉分析,使用CiteSpace和VOSviewer软件生成知识图谱。结果:共鉴定出768篇文章,发文涉及美国、意大利和中国为首的319个国家/地区和4 366个机构,领先的研究机构是梅奥诊所和哈佛医学院。New England Journal of Medicine是该领域最常被引用的期刊。在6 687位作者中,Arbelo Elena撰写的研究最多,Guo T被共同引用的次数最多,心房纤颤是最常见的关键词。结论:随着COVID-19的暴发,对COVID-19所致新发/进行性心律失常事件的研究蓬勃发展,未来的研究者可能会对COVID-19感染后新发或遗留的快速性心律失常/缓慢性心律失常的发生机制进行进一步的探索。
文摘目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清零”策略防控效果提供科学依据。方法考虑到西安市本轮疫情存在大量的无症状感染者、依时变化的参数以及采取的管控举措等特点,构建具有阶段性防控措施的时变SEAIQR模型。考虑到COVID-19疫情数据的时序性特征及它们之间的非线性关系,构建深度学习Dropout-LSTM模型。选用2021年12月9日-2022年1月31日西安市新增确诊病例数据进行拟合,用2022年2月1日-2022年2月7日数据评估预测效果,计算有效再生数(R_(t))并评价不同参数对疫情发展的影响。结果SEAIQR模型预测的新增确诊病例拐点预计在2021年12月26日出现,约为176例,疫情将于2022年1月24日实现“动态清零”,模型R^(2)=0.849。Dropout-LSTM模型能够体现数据的时序性与非线性特征,预测出的新增确诊病例数与实际情况高度吻合,R^(2)=0.937。Dropout-LSTM模型的MAE和RMSE均较SEAIQR模型低,说明预测结果更为理想。疫情暴发初期,R 0为5.63,自实施全面管控后,R_(t)呈逐渐下降趋势,直到2021年12月27日降至1.0以下。随着有效接触率不断缩小、管控措施的提早实施及免疫阈值的提高,新增确诊病例在到达拐点时的人数将会持续降低。结论建立的Dropout-LSTM模型实现了较准确的疫情预测,可为COVID-19疫情“动态清零”防控决策提供借鉴。
文摘目的分析COVID-19疫情暴发前后不同国家经季节和日历调整后的生育率(seasonally and calendar adjusted fertility rate,SAFR)趋势的变化及其影响因素。方法使用国际人类生育力数据库(Human Fertility Database,HFD)中28个国家自2012年1月至2022年12月的月度SAFR数据,以2020年12月(2020年3月疫情暴发起点加9个月妊娠过程)为节点划分为疫情前(2012.1-2020.11)和疫情后(2020.12-2022.12)进行比较,使用中断时间序列方法分析各国疫情前后的SAFR趋势(短期波动和长期趋势)是否发生变化,使用秩和检验分析疫情前SAFR、人均GDP、公共卫生和社会措施(public health and social measures,PHSM)和失业率是否与SAFR趋势变化有关。结果疫情后28个国家中19个国家的SAFR出现短期下降,随后反弹。对于长期趋势,2个国家由下降趋势转为上升趋势,8个国家由上升趋势转为下降趋势,6个国家的SAFR保持不变。SAFR变化率下降主要集中在部分中欧国家以及地中海西岸的国家,而SAFR变化率增加的国家主要分布在北欧以及西欧地区。SAFR无短期波动的国家疫情前的SAFR低于有短期波动的国家(P=0.041),SAFR变化率下降国家的疫情前SAFR(P=0.005)与人均GDP(P=0.027)均低于SAFR变化率上升国家。未发现SAFR短期波动或长期趋势与PHSM严重程度指数或失业率存在关联。结论COVID-19疫情对28个国家的SAFR造成了不同的短期和长期影响,特别是经济水平和疫情前SAFR相对较低的国家可能更易遭到进一步打击。COVID-19疫情对各国人口的更长期影响值得进一步关注。