The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral elec-trolytes,their efficie...The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral elec-trolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2)conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2)electrolysis.It commences with an overview of the latest advancements in acidic CO_(2)electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2)elec-trolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2)electrolysis are suggested.展开更多
In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geop...In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate.展开更多
The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing t...The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.展开更多
Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivi...Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.展开更多
水气分散体系驱油技术是针对低渗透油田采出程度低研发的新型提高采收率技术,目前已在长庆油田取得明显增油效果,但分散体系中微气泡与孔隙作用复杂,对其微观驱油机理的研究正逐步深入。根据低渗透、非均质岩心的特点,制作边长为1.5 cm...水气分散体系驱油技术是针对低渗透油田采出程度低研发的新型提高采收率技术,目前已在长庆油田取得明显增油效果,但分散体系中微气泡与孔隙作用复杂,对其微观驱油机理的研究正逐步深入。根据低渗透、非均质岩心的特点,制作边长为1.5 cm的玻璃刻蚀模型,在油藏温压条件下,进行CO_(2)-水分散体系渗流实验。通过观察微气泡与油、水、岩石相互作用过程,获取气泡吸附能力、推动油膜能力、气泡弹性能量等数据,进而定量表征分析驱油效果。实验结果表明:微气泡与油界面结合,具有特殊的吸附油膜现象,与水驱、气驱等作用机理显著不同。驱替过程相邻气泡间的合并也促进了油膜汇聚,同时微气泡的合并有助于气泡的流动,使吸附在气泡表面的油膜随气泡运移。微气泡运移时,气泡体积因压力降低而膨胀,所释放的弹性能量能够推动吸附在壁面的油膜运移。此外,采用Volume of Fluid多相流模型,对水气分散体系中微气泡推动油膜的运移过程进行模拟及分析,得到驱替油膜的主要因素是微气泡形变产生的弹性能量和微气泡自身的能量。气泡的能量作用在气泡前缘,通过与油膜表面接触产生推动作用。展开更多
Silver-copper electrocatalysts have demonstrated effectively catalytic performance in electroreduction CO_(2) toward CH_(4),yet a revealing insight into the reaction pathway and mechanism has remained elusive.Herein,w...Silver-copper electrocatalysts have demonstrated effectively catalytic performance in electroreduction CO_(2) toward CH_(4),yet a revealing insight into the reaction pathway and mechanism has remained elusive.Herein,we construct chemically bonded Ag-Cu_(2)O boundaries,in which the complete reduction of Cu_(2)O to Cu has been strongly impeded owing to the presence of surface Ag shell.The interfacial confinement effect helps to maintain Cu^(+)sites at the Ag-Cu_(2)O boundaries.Using in situ/operando spectroscopy and theoretical simulations,it is revealed that CO_(2) is enriched at the Ag-Cu_(2)O boundaries due to the enhanced physisorption and chemisorption to CO_(2),activating CO_(2) to form the stable intermediate^(*)CO.The boundaries between Ag shell and the Cu_(2)O mediate local^(*)CO coverage and promote^(*)CHO intermediate formation,consequently facilitating CO_(2)-to-CH_(4) conversion.This work not only reveals the structure-activity relationships but also offers insights into the reaction mechanism on Ag-Cu catalysts for efficient electrocatalytic CO_(2) reduction.展开更多
CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbon...CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.展开更多
An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant s...An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant surface nickel and cobalt components as active sites led to strong Ni-Co interaction with charge transfer from nickel to cobalt.Notably,electron-enriched Coδ-species participated in efficient chemisorption and activation of CO_(2)to generate monodentate carbonate.Simultaneously,plentiful available Ni0sites facilitated H2dissociation,thus CO_(2)and H2were smoothly activated at zones of Coδ-species and Ni0,respectively.Detailed in situ DRIFTS,quasi situ XPS,TPSR,and DFT calculations substantiated a new formate evolution mechanism via monodentate carbonate instead of traditional bidentate carbonate based on synergistic catalysis of Coδ-species and Ni0.The zonal activation of CO_(2)and H2by tuning electron behaviors of double-center catalysts can boost heterogeneous catalytic hydrogenation performance.展开更多
Biogas is a renewable and clean energy source that plays an important role in the current environment of lowcarbon transition.If high-content CO_(2) in biogas can be separated,transformed,and utilized,it not only real...Biogas is a renewable and clean energy source that plays an important role in the current environment of lowcarbon transition.If high-content CO_(2) in biogas can be separated,transformed,and utilized,it not only realizes high-value utilization of biogas but also promotes carbon reduction in the biogas field.To improve the combustion stability of biogas,an inhomogeneous,partially premixed stratified(IPPS)combustion model was adopted in this study.The thermal flame structure and stability were investigated for a wide range of mixture inhomogeneities,turbulence levels,CO_(2) concentrations,air-to-fuel velocity ratios,and combustion energies in a concentric flow slot burner(CFSB).A fine-wire thermocouple is used to resolve the thermal flame structure.The flame size was reduced by increasing the CO_(2) concentration and the flames became lighter blue.The flame temperature also decreased with increase in CO_(2) concentration.Flame stability was reduced by increasing the CO_(2) concentration.However,at a certain level of mixture inhomogeneity,the concentration of CO_(2) in the IPPS mode did not affect the stability.Accordingly,the IPPS mode of combustion should be suitable for the combustion and stabilization of biogas.This should support the design of highly stabilized biogas turbulent flames independent of CO_(2) concentration.The data show that the lower stability conditions are partially due to the change in fuel combustion energy,which is characterized by the Wobbe index(WI).In addition,at a certain level of mixture inhomogeneity,the effect of the WI on flame stability becomes dominant.展开更多
文摘The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral elec-trolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2)conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2)electrolysis.It commences with an overview of the latest advancements in acidic CO_(2)electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2)elec-trolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2)electrolysis are suggested.
基金This study was supported by MatSoil Company(Grant No.04G/2022)This research was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie(Grant No.778120).
文摘In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate.
基金financially supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Wuhan Science and Technology Bureau of China(Grant No.2023020201010081)the National Nature Science Foundation of China(Grant No.U22A20239).
文摘The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.
基金partially supported by the US National Science Foundation(1903722,1243232)。
文摘Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.
文摘水气分散体系驱油技术是针对低渗透油田采出程度低研发的新型提高采收率技术,目前已在长庆油田取得明显增油效果,但分散体系中微气泡与孔隙作用复杂,对其微观驱油机理的研究正逐步深入。根据低渗透、非均质岩心的特点,制作边长为1.5 cm的玻璃刻蚀模型,在油藏温压条件下,进行CO_(2)-水分散体系渗流实验。通过观察微气泡与油、水、岩石相互作用过程,获取气泡吸附能力、推动油膜能力、气泡弹性能量等数据,进而定量表征分析驱油效果。实验结果表明:微气泡与油界面结合,具有特殊的吸附油膜现象,与水驱、气驱等作用机理显著不同。驱替过程相邻气泡间的合并也促进了油膜汇聚,同时微气泡的合并有助于气泡的流动,使吸附在气泡表面的油膜随气泡运移。微气泡运移时,气泡体积因压力降低而膨胀,所释放的弹性能量能够推动吸附在壁面的油膜运移。此外,采用Volume of Fluid多相流模型,对水气分散体系中微气泡推动油膜的运移过程进行模拟及分析,得到驱替油膜的主要因素是微气泡形变产生的弹性能量和微气泡自身的能量。气泡的能量作用在气泡前缘,通过与油膜表面接触产生推动作用。
基金financially supported by the National Natural Science Foundation of China (21968020)the Natural Science Foundation of Inner Mongolia (2022MS02011 and 2023MS02014)+1 种基金the Science and Technology Projects of China Northern Rare Earth (BFXT-2022-D-0023)the Open Research Subject of Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control (2021Z01)。
文摘Silver-copper electrocatalysts have demonstrated effectively catalytic performance in electroreduction CO_(2) toward CH_(4),yet a revealing insight into the reaction pathway and mechanism has remained elusive.Herein,we construct chemically bonded Ag-Cu_(2)O boundaries,in which the complete reduction of Cu_(2)O to Cu has been strongly impeded owing to the presence of surface Ag shell.The interfacial confinement effect helps to maintain Cu^(+)sites at the Ag-Cu_(2)O boundaries.Using in situ/operando spectroscopy and theoretical simulations,it is revealed that CO_(2) is enriched at the Ag-Cu_(2)O boundaries due to the enhanced physisorption and chemisorption to CO_(2),activating CO_(2) to form the stable intermediate^(*)CO.The boundaries between Ag shell and the Cu_(2)O mediate local^(*)CO coverage and promote^(*)CHO intermediate formation,consequently facilitating CO_(2)-to-CH_(4) conversion.This work not only reveals the structure-activity relationships but also offers insights into the reaction mechanism on Ag-Cu catalysts for efficient electrocatalytic CO_(2) reduction.
基金National Natural Science Foundation of China(21706172)Shanxi Province Natural Science Foundation(202203021221069 and 20210302123167).
文摘CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.
基金funded by the Science and Technology Project of Southwest United Graduate School of Yunnan Province(No.202302AQ370002)the National Natural Science Foundation of China(No.22206066)。
文摘An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant surface nickel and cobalt components as active sites led to strong Ni-Co interaction with charge transfer from nickel to cobalt.Notably,electron-enriched Coδ-species participated in efficient chemisorption and activation of CO_(2)to generate monodentate carbonate.Simultaneously,plentiful available Ni0sites facilitated H2dissociation,thus CO_(2)and H2were smoothly activated at zones of Coδ-species and Ni0,respectively.Detailed in situ DRIFTS,quasi situ XPS,TPSR,and DFT calculations substantiated a new formate evolution mechanism via monodentate carbonate instead of traditional bidentate carbonate based on synergistic catalysis of Coδ-species and Ni0.The zonal activation of CO_(2)and H2by tuning electron behaviors of double-center catalysts can boost heterogeneous catalytic hydrogenation performance.
基金funded by the American University in Cairo research grants(Project number SSE-MENG-M.M.-FY18-FY19-FY20-RG(1-18)–2017-Nov-11-17-52-02).
文摘Biogas is a renewable and clean energy source that plays an important role in the current environment of lowcarbon transition.If high-content CO_(2) in biogas can be separated,transformed,and utilized,it not only realizes high-value utilization of biogas but also promotes carbon reduction in the biogas field.To improve the combustion stability of biogas,an inhomogeneous,partially premixed stratified(IPPS)combustion model was adopted in this study.The thermal flame structure and stability were investigated for a wide range of mixture inhomogeneities,turbulence levels,CO_(2) concentrations,air-to-fuel velocity ratios,and combustion energies in a concentric flow slot burner(CFSB).A fine-wire thermocouple is used to resolve the thermal flame structure.The flame size was reduced by increasing the CO_(2) concentration and the flames became lighter blue.The flame temperature also decreased with increase in CO_(2) concentration.Flame stability was reduced by increasing the CO_(2) concentration.However,at a certain level of mixture inhomogeneity,the concentration of CO_(2) in the IPPS mode did not affect the stability.Accordingly,the IPPS mode of combustion should be suitable for the combustion and stabilization of biogas.This should support the design of highly stabilized biogas turbulent flames independent of CO_(2) concentration.The data show that the lower stability conditions are partially due to the change in fuel combustion energy,which is characterized by the Wobbe index(WI).In addition,at a certain level of mixture inhomogeneity,the effect of the WI on flame stability becomes dominant.