为了提高Sn基材料表面CO_(2)电化学还原为甲酸盐的法拉第效率,利用一步溶剂热法合成了具有丰富硫空位的Cu掺杂SnS_(2)纳米花(Cu-SnS_(2-x))催化剂,在较宽的电位窗口实现了CO_(2)电化学还原制备甲酸盐。结果表明,通过调控催化剂制备过程...为了提高Sn基材料表面CO_(2)电化学还原为甲酸盐的法拉第效率,利用一步溶剂热法合成了具有丰富硫空位的Cu掺杂SnS_(2)纳米花(Cu-SnS_(2-x))催化剂,在较宽的电位窗口实现了CO_(2)电化学还原制备甲酸盐。结果表明,通过调控催化剂制备过程中Cu和Sn的摩尔比,在-1.1 V vs.RHE电位条件下得到了72.64%的FE_(formate),电流密度J_(formate)达到-14.38 mA/cm^(2)。二维纳米片阵列增加了催化活性位点,Cu掺杂所产生的硫空位能够协同提高催化活性、促进电子转移,从而提高甲酸盐的选择性。展开更多
A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic syn...A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic synthesis of cyclic carbonates and oxazolidinones via the cycloaddition reactions between CO_(2) and epoxides or aziridines with excellent yield and high selectivity in the absence of co-catalyst,metal and solvent.Due to the synergistic effects of hydroxyl groups and halogen anion,the cycloaddition reactions proceeded smoothly either at atmospheric pressure or room temperature.The selectivity for substituted oxazolidinones at 5-and 4-positions can be tuned via changing the reaction conditions.Finally,possible mechanisms including the activation of both CO_(2) and epoxide or aziridines were proposed based on the literatures and experimental results.展开更多
Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the inje...Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.展开更多
文摘为了提高Sn基材料表面CO_(2)电化学还原为甲酸盐的法拉第效率,利用一步溶剂热法合成了具有丰富硫空位的Cu掺杂SnS_(2)纳米花(Cu-SnS_(2-x))催化剂,在较宽的电位窗口实现了CO_(2)电化学还原制备甲酸盐。结果表明,通过调控催化剂制备过程中Cu和Sn的摩尔比,在-1.1 V vs.RHE电位条件下得到了72.64%的FE_(formate),电流密度J_(formate)达到-14.38 mA/cm^(2)。二维纳米片阵列增加了催化活性位点,Cu掺杂所产生的硫空位能够协同提高催化活性、促进电子转移,从而提高甲酸盐的选择性。
文摘A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic synthesis of cyclic carbonates and oxazolidinones via the cycloaddition reactions between CO_(2) and epoxides or aziridines with excellent yield and high selectivity in the absence of co-catalyst,metal and solvent.Due to the synergistic effects of hydroxyl groups and halogen anion,the cycloaddition reactions proceeded smoothly either at atmospheric pressure or room temperature.The selectivity for substituted oxazolidinones at 5-and 4-positions can be tuned via changing the reaction conditions.Finally,possible mechanisms including the activation of both CO_(2) and epoxide or aziridines were proposed based on the literatures and experimental results.
文摘Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.