采用共沉淀法制备了AgBr/Ag_(2)CO_(3)复合催化剂。研究表明,AgBr/Ag_(2)CO_(3)复合催化剂的光催化性能比单一相的AgBr或Ag_(2)CO_(3)显著提高,0.10 g AgBr/Ag_(2)CO_(3)样品光照降解200 mL 10 mg/L的亚甲基蓝溶液20 min后,降解率高达99...采用共沉淀法制备了AgBr/Ag_(2)CO_(3)复合催化剂。研究表明,AgBr/Ag_(2)CO_(3)复合催化剂的光催化性能比单一相的AgBr或Ag_(2)CO_(3)显著提高,0.10 g AgBr/Ag_(2)CO_(3)样品光照降解200 mL 10 mg/L的亚甲基蓝溶液20 min后,降解率高达99.97%,是AgBr的2.5倍,是Ag_(2)CO_(3)的4.77倍,且AgBr/Ag_(2)CO_(3)对亚甲基蓝的降解过程符合一级动力学模型。展开更多
CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systema...CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systematic analysis on the heat mining mechanism and performance of CO_(2),as well as the problems that may occur during geothermal energy exploitation at specific gas reservoir conditions.In this paper,a base numerical simulation model of a typical depleted high-temperature gas reservoir was established to simulate the geothermal energy exploitation processes via recycling CO_(2) and water,with a view to investigate whether and/or at which conditions CO_(2) is more suitable than water for geothermal energy exploitation.The problems that may occur during the CO_(2)-based geothermal energy exploitation were also analyzed along with proposed feasible solutions.The results indicate that,for a depleted low-permeability gas reservoir with dimensions of 1000 m×500 m×50 m and temperature of 150℃ using a single injection-production well group for 40 years of operation,the heat mining rate of CO_(2) can be up to 3.8 MW at a circulation flow rate of 18 kg s^(-1)due to its high mobility along with the flow path in the gas reservoir,while the heat mining rate of water is only about 2 MW due to limitations on the injectivity and mobility.The reservoir physical property and injection-production scheme have some effects on the heat mining rate,but CO_(2)always has better performance than water at most reservoir and operation conditions,even under a high water saturation.The main problems for CO_(2) circulation are wellbore corrosion and salt precipitation that can occur when the reservoir has high water saturation and high salinity,in which serious salt precipitation can reduce formation permeability and result in a decline of CO_(2) heat mining rate (e.g.up to 24%reduction).It is proposed to apply a low-salinity water slug before CO_(2)injection to reduce the damage caused by salt precipitation.For high-permeability gas reservoirs with high water saturation and high salinity,the superiority of CO_(2) as a heat transmission fluid becomes obscure and water injection is recommended.展开更多
Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·...Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·Mg-Al LDH.We propose that CO_(2) can be used for the desorption of Cl^(-)from Cl·Mg-Al LDH to regenerate CO_(3)·Mg-Al LDH.Herein,we studied the desorption of a from CI-Mg-Al LDH by adding water to Cl·Mg-Al LDH and blowing CO_(2) into it.We also analyzed the effects of temperature and water addition speed on the desorption of CI^(-)from Cl·Mg-Al LDH.Our results show that the added water adhered to CI·Mg-Al LDH and that CO_(2) in the gaseous phase was dissolved in this adhered water,thus generating CO_(3)^(2-).Therefore,anion exchange occurred between CO_(3)^(2-) and Cl^(-)in the Cl·Mg-Al LDH,thus desorbing Cl^(-).展开更多
With increasing CO_(2)concentration in the atmosphere,CO_(2)geo-aequestration has become a popular technique to counter the dangers of global warming resulting from high levels of CO_(2)in the atmosphere.This paper ex...With increasing CO_(2)concentration in the atmosphere,CO_(2)geo-aequestration has become a popular technique to counter the dangers of global warming resulting from high levels of CO_(2)in the atmosphere.This paper examins sequestration parameters such as CO_(2)plume behaviour,residual gas trapping and injectivity as a means of achieving safe and successful CO_(2)storage in saline aquifers.Mineral precipitation/dissolution rates are used to establish a relationship between these parameters and geochemical reactions in saline aquifers.To achieve this,mechanistic models(6 models with different inputs,created using CMG e GEM,2016 and WINPROP,2016)are simulated using input data from literature and studying changes in fluids and formation properties as well as mineral precipitation/dissolution rates in aquifers when subjected to different conditions in the different models.The results from the models show that high CO_(2)dissolution,which creates large CO_(2)plume,leads to high mineral dissolution/precipitation as results of increased fluid-rock interactions(geochemical reactions);whereas injectivity,although enhanced by CO_(2)-water cyclic injection,does not show much increase in bottom hole pressure when mineral trapping(thus geochemical reactions)is introduced into the model.Sensitivity study on residual gas trapping shows that high residual gas saturation leads to reduced mineral precipitation/dissolution due to the reduced amount of dissolved CO_(2)in brine.Also,rapid changes in the bottom hole pressure at high residual gas saturation means that a formation that fosters high residual gas trapping,rather than CO_(2)dissolution in brine,is more likely to experience injectivity issues during the sequestration process.展开更多
高镍三元正极材料(NCM811)具备较高的能量密度等优点受到广泛关注。Ni_(0.8)Co_(0.1)Mn_(0.1)(OH)_(2)作为NCM811的前驱体,其结构、形貌等直接影响NCM811的结构和电化学性能。本文以Ni_(0.8)Co_(0.1)Mn_(0.1)(OH)_(2)前驱体为研究对象,...高镍三元正极材料(NCM811)具备较高的能量密度等优点受到广泛关注。Ni_(0.8)Co_(0.1)Mn_(0.1)(OH)_(2)作为NCM811的前驱体,其结构、形貌等直接影响NCM811的结构和电化学性能。本文以Ni_(0.8)Co_(0.1)Mn_(0.1)(OH)_(2)前驱体为研究对象,研究了配位剂用量、合成温度、pH值、搅拌速度等条件对前驱体物相结构、形貌及正极材料电化学性能的影响,得到合成NCM811前驱体的最佳工艺条件。结果表明,最优的配位剂用量4 mol·L^(-1)、pH 11~11.5、搅拌速度1040 r·min^(-1)、反应温度50℃,将在此条件下制备的前驱体锂化预热、烧结获得的正极材料在0.2 C时放电容量高达198.5 m Ah·g^(-1),10 C时放电容量为132.7 m Ah·g^(-1)。展开更多
Nanosized NiO,CeO_(2) and NiO-CeO_(2) mixed oxides with different Ni/Ce molar ratios were prepared by the soft template method.All the samples were characterized by different techniques as to their chemical compositio...Nanosized NiO,CeO_(2) and NiO-CeO_(2) mixed oxides with different Ni/Ce molar ratios were prepared by the soft template method.All the samples were characterized by different techniques as to their chemical composition,structure,morphology and texture.On the catalysts submitted to the same reduction pretreatment adopted for the activity tests the surface basic properties and specific metal surface area were also determined.NiO and CeO_(2) nanocrystals of about 4 nm in size were obtained,regardless of the Ni/Ce molar ratio.The Raman and X-ray photoelectron spectroscopy results proved the formation of defective sites at the NiO-CeO_(2) interface,where Ni species are in strong interaction with the support.The microcalorimetric and Fourier transform infrared analyses of the reduced samples highlighted that,unlike metallic nickel,CeO_(2) is able to effectively adsorb CO_(2),forming carbonates and hydrogen carbonates.After reduction in H2 at 400°C for 1 h,the catalytic performance was studied in the CO and CO_(2) co-methanation reaction.Catalytic tests were performed at atmospheric pressure and 300°C,using CO/CO_(2)/H_(2) molar compositions of 1/1/7 or 1/1/5,and space velocities equal to 72000 or 450000 cm^(3)∙h^(-1)∙gcat^(-1).Whereas CO was almost completely hydrogenated in any investigated experimental conditions,CO_(2) conversion was strongly affected by both the CO/CO_(2)/H_(2) ratio and the space velocity.The faster and definitely preferred CO hydrogenation was explained in the light of the different mechanisms of CO and CO_(2) methanation.On a selected sample,the influence of the reaction temperature and of a higher number of space velocity values,as well as the stability,were also studied.Provided that the Ni content is optimized,the NiCe system investigated was very promising,being highly active for the CO_(x) co-methanation reaction in a wide range of operating conditions and stable(up to 50 h)also when submitted to thermal stress.展开更多
Experts have identified natural gas hydrates,which are found in the shallow seabed and beneath permafrost regions,as an energy source(mostly methane)that is greener than other petroleum fuel resources.With their world...Experts have identified natural gas hydrates,which are found in the shallow seabed and beneath permafrost regions,as an energy source(mostly methane)that is greener than other petroleum fuel resources.With their worldwide distribution and abundance,gas hydrates have vast potential to become the next pillar of the energy industry.Although no entity has established methane extraction from hydrates at a commercial scale yet,extensive laboratory experiments have introduced several extraction strategies.Methods such as depressurization,thermal stimulation,and inhibitor injection are likely to disturb seabed integrity,which may result in catastrophic consequences.However,the CO_(2)replacement method is inferred to be preserving the seabed stability,offering an opportunity to reduce anthropogenic CO_(2)emissions safely.In this paper,we provide a comprehensive review of the progress of experimental work in developing methane-extraction methods for gas hydrate reservoirs.Depressurization combined with thermal stimulation can be proposed as a viable methane extraction method based on laboratory-scale experiments,however,a sustainable extraction method is yet to be developed to fieldscale when both economic and environmental perspectives are considered.A handful of field production runs have delivered positive outcomes to establish the exploitability of natural hydrate reservoirs,but thorough investigations and scientific collaborations are needed to develop hydrate accumulations as a commercially viable energy source.展开更多
文摘采用共沉淀法制备了AgBr/Ag_(2)CO_(3)复合催化剂。研究表明,AgBr/Ag_(2)CO_(3)复合催化剂的光催化性能比单一相的AgBr或Ag_(2)CO_(3)显著提高,0.10 g AgBr/Ag_(2)CO_(3)样品光照降解200 mL 10 mg/L的亚甲基蓝溶液20 min后,降解率高达99.97%,是AgBr的2.5倍,是Ag_(2)CO_(3)的4.77倍,且AgBr/Ag_(2)CO_(3)对亚甲基蓝的降解过程符合一级动力学模型。
基金This research was financially supported by the National Natural Science Foundation of China(Grant No.51674282)the National Key R&D Programs of China(Grant No.2019YFB1504201,2019YFB1504203,and 2019YFB1504204)+2 种基金the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGGC09 and CUG200637)the Open Project Program of Key Laboratory of Groundwater Resources and Environment(Jilin University),Ministry of Education(Grant No.202005001KF)Opening Fund of Key Laboratory of Unconventional Oil&Gas Development(China University of Petroleum(East China)),Ministry of Education(Grant No.19CX05005A-201)。
文摘CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systematic analysis on the heat mining mechanism and performance of CO_(2),as well as the problems that may occur during geothermal energy exploitation at specific gas reservoir conditions.In this paper,a base numerical simulation model of a typical depleted high-temperature gas reservoir was established to simulate the geothermal energy exploitation processes via recycling CO_(2) and water,with a view to investigate whether and/or at which conditions CO_(2) is more suitable than water for geothermal energy exploitation.The problems that may occur during the CO_(2)-based geothermal energy exploitation were also analyzed along with proposed feasible solutions.The results indicate that,for a depleted low-permeability gas reservoir with dimensions of 1000 m×500 m×50 m and temperature of 150℃ using a single injection-production well group for 40 years of operation,the heat mining rate of CO_(2) can be up to 3.8 MW at a circulation flow rate of 18 kg s^(-1)due to its high mobility along with the flow path in the gas reservoir,while the heat mining rate of water is only about 2 MW due to limitations on the injectivity and mobility.The reservoir physical property and injection-production scheme have some effects on the heat mining rate,but CO_(2)always has better performance than water at most reservoir and operation conditions,even under a high water saturation.The main problems for CO_(2) circulation are wellbore corrosion and salt precipitation that can occur when the reservoir has high water saturation and high salinity,in which serious salt precipitation can reduce formation permeability and result in a decline of CO_(2) heat mining rate (e.g.up to 24%reduction).It is proposed to apply a low-salinity water slug before CO_(2)injection to reduce the damage caused by salt precipitation.For high-permeability gas reservoirs with high water saturation and high salinity,the superiority of CO_(2) as a heat transmission fluid becomes obscure and water injection is recommended.
文摘Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·Mg-Al LDH.We propose that CO_(2) can be used for the desorption of Cl^(-)from Cl·Mg-Al LDH to regenerate CO_(3)·Mg-Al LDH.Herein,we studied the desorption of a from CI-Mg-Al LDH by adding water to Cl·Mg-Al LDH and blowing CO_(2) into it.We also analyzed the effects of temperature and water addition speed on the desorption of CI^(-)from Cl·Mg-Al LDH.Our results show that the added water adhered to CI·Mg-Al LDH and that CO_(2) in the gaseous phase was dissolved in this adhered water,thus generating CO_(3)^(2-).Therefore,anion exchange occurred between CO_(3)^(2-) and Cl^(-)in the Cl·Mg-Al LDH,thus desorbing Cl^(-).
文摘With increasing CO_(2)concentration in the atmosphere,CO_(2)geo-aequestration has become a popular technique to counter the dangers of global warming resulting from high levels of CO_(2)in the atmosphere.This paper examins sequestration parameters such as CO_(2)plume behaviour,residual gas trapping and injectivity as a means of achieving safe and successful CO_(2)storage in saline aquifers.Mineral precipitation/dissolution rates are used to establish a relationship between these parameters and geochemical reactions in saline aquifers.To achieve this,mechanistic models(6 models with different inputs,created using CMG e GEM,2016 and WINPROP,2016)are simulated using input data from literature and studying changes in fluids and formation properties as well as mineral precipitation/dissolution rates in aquifers when subjected to different conditions in the different models.The results from the models show that high CO_(2)dissolution,which creates large CO_(2)plume,leads to high mineral dissolution/precipitation as results of increased fluid-rock interactions(geochemical reactions);whereas injectivity,although enhanced by CO_(2)-water cyclic injection,does not show much increase in bottom hole pressure when mineral trapping(thus geochemical reactions)is introduced into the model.Sensitivity study on residual gas trapping shows that high residual gas saturation leads to reduced mineral precipitation/dissolution due to the reduced amount of dissolved CO_(2)in brine.Also,rapid changes in the bottom hole pressure at high residual gas saturation means that a formation that fosters high residual gas trapping,rather than CO_(2)dissolution in brine,is more likely to experience injectivity issues during the sequestration process.
文摘高镍三元正极材料(NCM811)具备较高的能量密度等优点受到广泛关注。Ni_(0.8)Co_(0.1)Mn_(0.1)(OH)_(2)作为NCM811的前驱体,其结构、形貌等直接影响NCM811的结构和电化学性能。本文以Ni_(0.8)Co_(0.1)Mn_(0.1)(OH)_(2)前驱体为研究对象,研究了配位剂用量、合成温度、pH值、搅拌速度等条件对前驱体物相结构、形貌及正极材料电化学性能的影响,得到合成NCM811前驱体的最佳工艺条件。结果表明,最优的配位剂用量4 mol·L^(-1)、pH 11~11.5、搅拌速度1040 r·min^(-1)、反应温度50℃,将在此条件下制备的前驱体锂化预热、烧结获得的正极材料在0.2 C时放电容量高达198.5 m Ah·g^(-1),10 C时放电容量为132.7 m Ah·g^(-1)。
基金Open Access funding provided by Universita degli Studi di Cagliari.
文摘Nanosized NiO,CeO_(2) and NiO-CeO_(2) mixed oxides with different Ni/Ce molar ratios were prepared by the soft template method.All the samples were characterized by different techniques as to their chemical composition,structure,morphology and texture.On the catalysts submitted to the same reduction pretreatment adopted for the activity tests the surface basic properties and specific metal surface area were also determined.NiO and CeO_(2) nanocrystals of about 4 nm in size were obtained,regardless of the Ni/Ce molar ratio.The Raman and X-ray photoelectron spectroscopy results proved the formation of defective sites at the NiO-CeO_(2) interface,where Ni species are in strong interaction with the support.The microcalorimetric and Fourier transform infrared analyses of the reduced samples highlighted that,unlike metallic nickel,CeO_(2) is able to effectively adsorb CO_(2),forming carbonates and hydrogen carbonates.After reduction in H2 at 400°C for 1 h,the catalytic performance was studied in the CO and CO_(2) co-methanation reaction.Catalytic tests were performed at atmospheric pressure and 300°C,using CO/CO_(2)/H_(2) molar compositions of 1/1/7 or 1/1/5,and space velocities equal to 72000 or 450000 cm^(3)∙h^(-1)∙gcat^(-1).Whereas CO was almost completely hydrogenated in any investigated experimental conditions,CO_(2) conversion was strongly affected by both the CO/CO_(2)/H_(2) ratio and the space velocity.The faster and definitely preferred CO hydrogenation was explained in the light of the different mechanisms of CO and CO_(2) methanation.On a selected sample,the influence of the reaction temperature and of a higher number of space velocity values,as well as the stability,were also studied.Provided that the Ni content is optimized,the NiCe system investigated was very promising,being highly active for the CO_(x) co-methanation reaction in a wide range of operating conditions and stable(up to 50 h)also when submitted to thermal stress.
文摘Experts have identified natural gas hydrates,which are found in the shallow seabed and beneath permafrost regions,as an energy source(mostly methane)that is greener than other petroleum fuel resources.With their worldwide distribution and abundance,gas hydrates have vast potential to become the next pillar of the energy industry.Although no entity has established methane extraction from hydrates at a commercial scale yet,extensive laboratory experiments have introduced several extraction strategies.Methods such as depressurization,thermal stimulation,and inhibitor injection are likely to disturb seabed integrity,which may result in catastrophic consequences.However,the CO_(2)replacement method is inferred to be preserving the seabed stability,offering an opportunity to reduce anthropogenic CO_(2)emissions safely.In this paper,we provide a comprehensive review of the progress of experimental work in developing methane-extraction methods for gas hydrate reservoirs.Depressurization combined with thermal stimulation can be proposed as a viable methane extraction method based on laboratory-scale experiments,however,a sustainable extraction method is yet to be developed to fieldscale when both economic and environmental perspectives are considered.A handful of field production runs have delivered positive outcomes to establish the exploitability of natural hydrate reservoirs,but thorough investigations and scientific collaborations are needed to develop hydrate accumulations as a commercially viable energy source.