SF_(6)电气设备内部的分解组分可以通过可调谐吸收光谱技术进行检测,其中CO_(2)浓度反映了设备内部的绝缘缺陷情况。因此,通过准确测量CO_(2)浓度可以及时发现设备潜在的绝缘故障。为克服传统最小二乘法浓度反演模型稳定性较差的问题,...SF_(6)电气设备内部的分解组分可以通过可调谐吸收光谱技术进行检测,其中CO_(2)浓度反映了设备内部的绝缘缺陷情况。因此,通过准确测量CO_(2)浓度可以及时发现设备潜在的绝缘故障。为克服传统最小二乘法浓度反演模型稳定性较差的问题,文中基于改进的旗鱼优化算法(Improved Sailed Fish Optimizer,ISFO)与核极限学习机(Kernel Based Extreme Learning Machine,KELM)建立了ISFO-KELM气体浓度反演模型。利用多策略初始化方法、Levy随机步长、柯西变异和自适应t分布变异等技术提升了旗鱼优化算法寻优能力和跳出局部最优解能力。实验结果表明,该模型具有高精度和鲁棒性,并且在稳定性和泛化能力方面优于最小二乘法、极限学习机、反向传播(Back Propagation,BP)神经网络等传统方法,对评估SF_(6)电气设备运行状态具有重要意义。展开更多
Oceanic uptake and storage of anthropogenic CO_(2)(CANT)are regulated by ocean circulation and ventilation.To decipher the storage and redistribution of CANT in the western North Pacific,where a major CANT sink develo...Oceanic uptake and storage of anthropogenic CO_(2)(CANT)are regulated by ocean circulation and ventilation.To decipher the storage and redistribution of CANT in the western North Pacific,where a major CANT sink develops,we investigated the water column carbonate system,dissolved inorganic radiocarbon and ancillary parameters in May and August 2018,spanning the Kuroshio Extension(KE,35-39°N),Kuroshio Recirculation(KR,27-35°N)and subtropical(21-27°N)zones.Water column CANT inventories were estimated to be 40.5±1.1 mol m^(-2) in the KR zone and 37.2±0.9 mol m^(-2) in the subtropical zone.In comparison with historical data obtained in 2005,relatively high rates of increase of the CANT inventory of 1.05±0.20 and 1.03±0.12 mol m^(-2) yr^(-1) in the recent decade were obtained in the KR and subtropical zones,respectively.Our water-mass-based analyses suggest that formation and transport of subtropical mode water dominate the deep penetration,storage,and redistribution of CANT in those two regions.In the KE zone,however,both the water column CANT inventory and the decadal CANT accumulation rate were small and uncertain owing to the dynamic hydrology,where the naturally uplifting isopycnal surfaces make CANT penetration relatively shallow.The findings of this study improve the understanding of the spatiotemporal variations of CANT distribution,storage,and transport in the western North Pacific.展开更多
The CO_(2)photoconversion is sensitive to the local reaction environment,of which activity and selectivity can be regulated by the change of reaction systems.This paper focuses on investigating the photocatalytic CO_(...The CO_(2)photoconversion is sensitive to the local reaction environment,of which activity and selectivity can be regulated by the change of reaction systems.This paper focuses on investigating the photocatalytic CO_(2)reduction behaviors of MOFs with the involvement of water under different reaction modes,including gas-solid and liquid-solid systems.The CO_(2)photoreduction in a liquid-solid system shows high performance in generating HCOOH with the selectivity of 100%.In contrast,the gas-solid system referring to the synergistic interaction of MOFs and H_(2)O vapor benefits to the formation of gas-phase products,such as CO and CH_(4).The possible mechanisms of photocatalytic CO_(2)reaction in two modes were investigated by in-situ Fourier-transform infrared spectroscopy,which indicates that the distinction in reaction consequence may result from the difference in CO_(2)chemisorbed modes and the proton provision.The choice of reaction system plays an important role in the achievement of high efficiency and selectivity for photocatalytic CO,reduction,whichis of great practical value in real-world applications.展开更多
文摘SF_(6)电气设备内部的分解组分可以通过可调谐吸收光谱技术进行检测,其中CO_(2)浓度反映了设备内部的绝缘缺陷情况。因此,通过准确测量CO_(2)浓度可以及时发现设备潜在的绝缘故障。为克服传统最小二乘法浓度反演模型稳定性较差的问题,文中基于改进的旗鱼优化算法(Improved Sailed Fish Optimizer,ISFO)与核极限学习机(Kernel Based Extreme Learning Machine,KELM)建立了ISFO-KELM气体浓度反演模型。利用多策略初始化方法、Levy随机步长、柯西变异和自适应t分布变异等技术提升了旗鱼优化算法寻优能力和跳出局部最优解能力。实验结果表明,该模型具有高精度和鲁棒性,并且在稳定性和泛化能力方面优于最小二乘法、极限学习机、反向传播(Back Propagation,BP)神经网络等传统方法,对评估SF_(6)电气设备运行状态具有重要意义。
基金The research was supported by the National Natural Science Foundation of China(42141001 and 91858210).
文摘Oceanic uptake and storage of anthropogenic CO_(2)(CANT)are regulated by ocean circulation and ventilation.To decipher the storage and redistribution of CANT in the western North Pacific,where a major CANT sink develops,we investigated the water column carbonate system,dissolved inorganic radiocarbon and ancillary parameters in May and August 2018,spanning the Kuroshio Extension(KE,35-39°N),Kuroshio Recirculation(KR,27-35°N)and subtropical(21-27°N)zones.Water column CANT inventories were estimated to be 40.5±1.1 mol m^(-2) in the KR zone and 37.2±0.9 mol m^(-2) in the subtropical zone.In comparison with historical data obtained in 2005,relatively high rates of increase of the CANT inventory of 1.05±0.20 and 1.03±0.12 mol m^(-2) yr^(-1) in the recent decade were obtained in the KR and subtropical zones,respectively.Our water-mass-based analyses suggest that formation and transport of subtropical mode water dominate the deep penetration,storage,and redistribution of CANT in those two regions.In the KE zone,however,both the water column CANT inventory and the decadal CANT accumulation rate were small and uncertain owing to the dynamic hydrology,where the naturally uplifting isopycnal surfaces make CANT penetration relatively shallow.The findings of this study improve the understanding of the spatiotemporal variations of CANT distribution,storage,and transport in the western North Pacific.
基金the Fujian Science Technology Innovation Laboratory for Optoelectronic Information of China(Nos.2021ZR105,2021ZZ103)the National Natural Science Foundation of China(Nos.22071246,22033008).
文摘The CO_(2)photoconversion is sensitive to the local reaction environment,of which activity and selectivity can be regulated by the change of reaction systems.This paper focuses on investigating the photocatalytic CO_(2)reduction behaviors of MOFs with the involvement of water under different reaction modes,including gas-solid and liquid-solid systems.The CO_(2)photoreduction in a liquid-solid system shows high performance in generating HCOOH with the selectivity of 100%.In contrast,the gas-solid system referring to the synergistic interaction of MOFs and H_(2)O vapor benefits to the formation of gas-phase products,such as CO and CH_(4).The possible mechanisms of photocatalytic CO_(2)reaction in two modes were investigated by in-situ Fourier-transform infrared spectroscopy,which indicates that the distinction in reaction consequence may result from the difference in CO_(2)chemisorbed modes and the proton provision.The choice of reaction system plays an important role in the achievement of high efficiency and selectivity for photocatalytic CO,reduction,whichis of great practical value in real-world applications.