Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.Howe...Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.However,photoreduction of CO_(2) by MHP remains a challenge because of the slow charge separation and transfer.Herein,a cobalt single-atom modified nitrogen-doped graphene(Co-NG)cocatalyst is prepared for enhanced photocatalytic CO_(2) reduction of bismuth-based MHP Cs_(3)Bi_(2)Br_(9).The optimal Cs_(3)Bi_(2)Br_(9)/Co-NG composite exhibits the CO production rate of 123.16μmol g^(-1)h^(-1),which is 17.3 times higher than that of Cs_(3)Bi_(2)Br_(9).Moreover,the Cs_(3)Bi_(2)Br_(9)/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability.Charge carrier dynamic characterizations such as Kelvin probe force microscopy(KPFM),single-particle PL microscope and transient absorption(TA)spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance.The reaction mechanism has been demonstrated by in situ diffuse reflectance infrared Fourier-transform spectroscopy measurement.In addition,in situ X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers,demonstrating that the introduction of Co-NG promotes the formation of ^(*)COOH intermediate,providing sufficient evidence for the highly selective generation of CO.This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO_(2) reduction and is expected to shed light on other photocatalytic applications.展开更多
Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily a...Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2) electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2) and a Faradaic efficiency of 93.0% at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2) reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.展开更多
Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive...Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.展开更多
Zinc indium sulfide(ZnIn_(2)S_(4),ZIS),a novel photocatalyst with layered nanostructure,has drawn significant attention in the field of photocatalytic CO_(2) reduction in recent years due to various advantages,includi...Zinc indium sulfide(ZnIn_(2)S_(4),ZIS),a novel photocatalyst with layered nanostructure,has drawn significant attention in the field of photocatalytic CO_(2) reduction in recent years due to various advantages,including non-toxicity,structural stability,easy availability,and suitable band gap.We introduced the types of ZISbased nanomaterials and their action mechanism in photocatalytic CO_(2) reduction.Moreover,we put forward prospects in the future development directions of ZIS-based nanomaterials for photocatalytic CO_(2) reduction.展开更多
Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomi...Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomically dispersed metal species in crystalline carbon nitride are still challenging owing to their high crystallization and structural stability.In this study,we developed a novel single-atomic Pt-Cu catalyst for reducing noble metal loading by combining Pt with earth-abundant Cu atoms and enhancing photocatalytic CO_(2)reduction.N-vacancy-rich crystalline carbon nitride was used as a fine-tuning ligand for isolated Pt-Cu atom dispersion based on its accessible functional N vacancies as the seeded centers.The synthesized dimetal Pt-Cu atoms on crystalline carbon nitride(Pt Cu-cr CN)exhibited high selectivity and activity for CO_(2)conversion without the addition of any cocatalyst or sacrificial agent.In particular,we demonstrated that the diatomic Pt-Cu exhibited high mass activity with only 0.32 wt% Pt loading and showed excellent photocatalytic selectivity toward CH_(4)generation.The mechanism of CO_(2)photoreduction for Pt Cu-cr CN was proposed based on the observations and analysis of aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images,in situ irradiated X-ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The findings of this work provide insights for abrogating specific bifunctional atomic metal sites in noble metal-based photocatalysts by reducing noble metal loading and maximizing their effective mass activity.展开更多
Discovering highly selective catalysts is key to achieve effective CO_(2) photoreduction to hydrocarbon fuels.In this work,we construct an ultrathin dimension-matched S-scheme Bi_(3)NbO_(7)/g-C_(3)N_(4) heterostructur...Discovering highly selective catalysts is key to achieve effective CO_(2) photoreduction to hydrocarbon fuels.In this work,we construct an ultrathin dimension-matched S-scheme Bi_(3)NbO_(7)/g-C_(3)N_(4) heterostructure,which permits the highly selective photocatalytic reduction of CO_(2) to CH_(4),as shown by 13C isotopic measurements.Density functional theory calculations combined with solid-state characterization confirm the electron transfer from g-C_(3)N_(4) nanosheets to Bi_(3)NbO_(7),establishing an internal electric field.The internal electric field drives photogenerated electrons from Bi_(3)NbO_(7) to g-C_(3)N_(4),as revealed by in-situ X-ray photoelectron spectroscopy,demonstrating the presence of an S-scheme charge transfer path in Bi_(3)NbO_(7)/g-C_(3)N_(4) heterostructures allowing efficient and selective CO2 photoreduction.As a result,the optimized sample achieved a CH_(4) evolution rate of 37.59μmol·g^(-1)·h^(-1),a ca.15-fold enhancement compared to ultrathin g-C_(3)N_(4) nanosheets,and also retained stability after 10 reaction cycles and 40 h of simulated solar irradiation with no sacrificial reagents.The optimized Bi3 Nb O7/g-C_(3)N_(4) composites achieve almost 90%selectivity for CH_(4) production over CO.展开更多
文摘Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.However,photoreduction of CO_(2) by MHP remains a challenge because of the slow charge separation and transfer.Herein,a cobalt single-atom modified nitrogen-doped graphene(Co-NG)cocatalyst is prepared for enhanced photocatalytic CO_(2) reduction of bismuth-based MHP Cs_(3)Bi_(2)Br_(9).The optimal Cs_(3)Bi_(2)Br_(9)/Co-NG composite exhibits the CO production rate of 123.16μmol g^(-1)h^(-1),which is 17.3 times higher than that of Cs_(3)Bi_(2)Br_(9).Moreover,the Cs_(3)Bi_(2)Br_(9)/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability.Charge carrier dynamic characterizations such as Kelvin probe force microscopy(KPFM),single-particle PL microscope and transient absorption(TA)spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance.The reaction mechanism has been demonstrated by in situ diffuse reflectance infrared Fourier-transform spectroscopy measurement.In addition,in situ X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers,demonstrating that the introduction of Co-NG promotes the formation of ^(*)COOH intermediate,providing sufficient evidence for the highly selective generation of CO.This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO_(2) reduction and is expected to shed light on other photocatalytic applications.
文摘Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2) electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2) and a Faradaic efficiency of 93.0% at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2) reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.
文摘Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.
文摘Zinc indium sulfide(ZnIn_(2)S_(4),ZIS),a novel photocatalyst with layered nanostructure,has drawn significant attention in the field of photocatalytic CO_(2) reduction in recent years due to various advantages,including non-toxicity,structural stability,easy availability,and suitable band gap.We introduced the types of ZISbased nanomaterials and their action mechanism in photocatalytic CO_(2) reduction.Moreover,we put forward prospects in the future development directions of ZIS-based nanomaterials for photocatalytic CO_(2) reduction.
文摘Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomically dispersed metal species in crystalline carbon nitride are still challenging owing to their high crystallization and structural stability.In this study,we developed a novel single-atomic Pt-Cu catalyst for reducing noble metal loading by combining Pt with earth-abundant Cu atoms and enhancing photocatalytic CO_(2)reduction.N-vacancy-rich crystalline carbon nitride was used as a fine-tuning ligand for isolated Pt-Cu atom dispersion based on its accessible functional N vacancies as the seeded centers.The synthesized dimetal Pt-Cu atoms on crystalline carbon nitride(Pt Cu-cr CN)exhibited high selectivity and activity for CO_(2)conversion without the addition of any cocatalyst or sacrificial agent.In particular,we demonstrated that the diatomic Pt-Cu exhibited high mass activity with only 0.32 wt% Pt loading and showed excellent photocatalytic selectivity toward CH_(4)generation.The mechanism of CO_(2)photoreduction for Pt Cu-cr CN was proposed based on the observations and analysis of aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images,in situ irradiated X-ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The findings of this work provide insights for abrogating specific bifunctional atomic metal sites in noble metal-based photocatalysts by reducing noble metal loading and maximizing their effective mass activity.
文摘Discovering highly selective catalysts is key to achieve effective CO_(2) photoreduction to hydrocarbon fuels.In this work,we construct an ultrathin dimension-matched S-scheme Bi_(3)NbO_(7)/g-C_(3)N_(4) heterostructure,which permits the highly selective photocatalytic reduction of CO_(2) to CH_(4),as shown by 13C isotopic measurements.Density functional theory calculations combined with solid-state characterization confirm the electron transfer from g-C_(3)N_(4) nanosheets to Bi_(3)NbO_(7),establishing an internal electric field.The internal electric field drives photogenerated electrons from Bi_(3)NbO_(7) to g-C_(3)N_(4),as revealed by in-situ X-ray photoelectron spectroscopy,demonstrating the presence of an S-scheme charge transfer path in Bi_(3)NbO_(7)/g-C_(3)N_(4) heterostructures allowing efficient and selective CO2 photoreduction.As a result,the optimized sample achieved a CH_(4) evolution rate of 37.59μmol·g^(-1)·h^(-1),a ca.15-fold enhancement compared to ultrathin g-C_(3)N_(4) nanosheets,and also retained stability after 10 reaction cycles and 40 h of simulated solar irradiation with no sacrificial reagents.The optimized Bi3 Nb O7/g-C_(3)N_(4) composites achieve almost 90%selectivity for CH_(4) production over CO.