This paper systematically reviews the current applications of various spatial information technologies in CO_(2)sequestration monitoring,analyzes the challenges faced by spatial information technologies in CO_(2)seque...This paper systematically reviews the current applications of various spatial information technologies in CO_(2)sequestration monitoring,analyzes the challenges faced by spatial information technologies in CO_(2)sequestration monitoring,and prospects the development of spatial information technologies in CO_(2)sequestration monitoring.Currently,the spatial information technologies applied in CO_(2)sequestration monitoring mainly include five categories:eddy covariance method,remote sensing technology,geographic information system,Internet of Things technology,and global navigation satellite system.These technologies are involved in three aspects:monitoring data acquisition,positioning and data transmission,and data management and decision support.Challenges faced by the spatial information technologies in CO_(2)sequestration monitoring include:selecting spatial information technologies that match different monitoring purposes,different platforms,and different monitoring sites;establishing effective data storage and computing capabilities to cope with the broad sources and large volumes of monitoring data;and promoting collaborative operations by interacting and validating spatial information technologies with mature monitoring technologies.In the future,it is necessary to establish methods and standards for designing spatial information technology monitoring schemes,develop collaborative application methods for cross-scale monitoring technologies,integrate spatial information technologies with artificial intelligence and high-performance computing technologies,and accelerate the application of spatial information technologies in carbon sequestration projects in China.展开更多
Electronic nose(eNose) is a modern bioelectronic sensor for monitoring biological processes that convert CO_(2) into valueadded products, such as products formed during photosynthesis and microbial fermentation. eNose...Electronic nose(eNose) is a modern bioelectronic sensor for monitoring biological processes that convert CO_(2) into valueadded products, such as products formed during photosynthesis and microbial fermentation. eNose technology uses an array of sensors to detect and quantify gases, including CO_(2), in the air. This study briefly introduces the concept of eNose technology and potential applications thereof in monitoring CO_(2) conversion processes. It also provides background information on biological CO_(2) conversion processes. Furthermore, the working principles of eNose technology vis-à-vis gas detection are discussed along with its advantages and limitations versus traditional monitoring methods. This study also provides case studies that have used this technology for monitoring biological CO_(2) conversion processes. eNose-predicted measurements were observed to be completely aligned with biological parameters for R~2 values of 0.864, 0.808, 0.802, and 0.948. We test eNose technology in a variety of biological settings, such as algae farms or bioreactors, to determine its effectiveness in monitoring CO_(2) conversion processes. We also explore the potential benefits of employing this technology vis-à-vis monitoring biological CO_(2) conversion processes, such as increased reaction efficiency and reduced costs versus traditional monitoring methods. Moreover, future directions and challenges of using this technology in CO_(2) capture and conversion have been discussed. Overall, we believe this study would contribute to developing new and innovative methods for monitoring biological CO_(2) conversion processes and mitigating climate change.展开更多
In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-g...In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
基金Supported by the CNPC Science and Technology Major Project(2021ZZ01-05).
文摘This paper systematically reviews the current applications of various spatial information technologies in CO_(2)sequestration monitoring,analyzes the challenges faced by spatial information technologies in CO_(2)sequestration monitoring,and prospects the development of spatial information technologies in CO_(2)sequestration monitoring.Currently,the spatial information technologies applied in CO_(2)sequestration monitoring mainly include five categories:eddy covariance method,remote sensing technology,geographic information system,Internet of Things technology,and global navigation satellite system.These technologies are involved in three aspects:monitoring data acquisition,positioning and data transmission,and data management and decision support.Challenges faced by the spatial information technologies in CO_(2)sequestration monitoring include:selecting spatial information technologies that match different monitoring purposes,different platforms,and different monitoring sites;establishing effective data storage and computing capabilities to cope with the broad sources and large volumes of monitoring data;and promoting collaborative operations by interacting and validating spatial information technologies with mature monitoring technologies.In the future,it is necessary to establish methods and standards for designing spatial information technology monitoring schemes,develop collaborative application methods for cross-scale monitoring technologies,integrate spatial information technologies with artificial intelligence and high-performance computing technologies,and accelerate the application of spatial information technologies in carbon sequestration projects in China.
基金supported by the National Key Technologies R & D Program of China during the 14th Five-Year Plan period (No. 2021YFD1700904)Henan Provincial Important Project (No. 221100320200)+1 种基金State Key Laboratory of Wheat and Maize Crap Science (No. SKL2023ZZ09)the Henan Center for Outstanding Overseas Scientists (No. GZS2021007)。
文摘Electronic nose(eNose) is a modern bioelectronic sensor for monitoring biological processes that convert CO_(2) into valueadded products, such as products formed during photosynthesis and microbial fermentation. eNose technology uses an array of sensors to detect and quantify gases, including CO_(2), in the air. This study briefly introduces the concept of eNose technology and potential applications thereof in monitoring CO_(2) conversion processes. It also provides background information on biological CO_(2) conversion processes. Furthermore, the working principles of eNose technology vis-à-vis gas detection are discussed along with its advantages and limitations versus traditional monitoring methods. This study also provides case studies that have used this technology for monitoring biological CO_(2) conversion processes. eNose-predicted measurements were observed to be completely aligned with biological parameters for R~2 values of 0.864, 0.808, 0.802, and 0.948. We test eNose technology in a variety of biological settings, such as algae farms or bioreactors, to determine its effectiveness in monitoring CO_(2) conversion processes. We also explore the potential benefits of employing this technology vis-à-vis monitoring biological CO_(2) conversion processes, such as increased reaction efficiency and reduced costs versus traditional monitoring methods. Moreover, future directions and challenges of using this technology in CO_(2) capture and conversion have been discussed. Overall, we believe this study would contribute to developing new and innovative methods for monitoring biological CO_(2) conversion processes and mitigating climate change.
基金supported by Research Project Supported by Horizon Europe Framework Programme(101183092)Shanxi Scholarship Council of China(2023-128)+2 种基金National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618)Small and mediumsized oriented scientific and technological enterprises innovation ability improvement project of Shandong Province(2023TSGC0004)。
文摘In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.