期刊文献+
共找到457篇文章
< 1 2 23 >
每页显示 20 50 100
Application of Feature, Event, and Process Methods to Leakage Scenario Development for Offshore CO_(2) Geological Storage
1
作者 Qiang Liu Yanzun Li +2 位作者 Meng Jing Qi Li Guizhen Liu 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期608-616,共9页
Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substant... Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substantial concern associated with this technology. This study introduces an innovative approach for establishing OCGS leakage scenarios, involving four pivotal stages, namely, interactive matrix establishment, risk matrix evaluation, cause–effect analysis, and scenario development, which has been implemented in the Pearl River Estuary Basin in China. The initial phase encompassed the establishment of an interaction matrix for OCGS systems based on features, events, and processes. Subsequent risk matrix evaluation and cause–effect analysis identified key system components, specifically CO_(2) injection and faults/features. Building upon this analysis, two leakage risk scenarios were successfully developed, accompanied by the corresponding mitigation measures. In addition, this study introduces the application of scenario development to risk assessment, including scenario numerical simulation and quantitative assessment. Overall, this research positively contributes to the sustainable development and safe operation of OCGS projects and holds potential for further refinement and broader application to diverse geographical environments and project requirements. This comprehensive study provides valuable insights into the establishment of OCGS leakage scenarios and demonstrates their practical application to risk assessment, laying the foundation for promoting the sustainable development and safe operation of ocean CO_(2) geological storage projects while proposing possibilities for future improvements and broader applications to different contexts. 展开更多
关键词 offshore co_(2)geological storage Features events and processes Scenario development Interaction matrix Risk matrix assessment
下载PDF
Simulation Study on the Migration Range of CO_(2) in the Offshore Saline Aquifer
2
作者 Jiayi Wu Zhichao Sheng Jiudi Li 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期599-607,共9页
The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_... The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained. 展开更多
关键词 offshore saline aquifer Carbon dioxide(co_(2)) Geological storage Migration range Geological changes
下载PDF
Assessing the Viability of Gandhar Field in India’s Cambay Basin for CO_(2) Storage
3
作者 Vikram Vishal Somali Roy +1 位作者 Yashvardhan Verma Bharath Shekar 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期529-543,共15页
Our research is centered on the Gandhar oil field, which was discovered in 1983, where daily oil production has declined significantly over the years. The primary objective was to evaluate the feasibility of carbon di... Our research is centered on the Gandhar oil field, which was discovered in 1983, where daily oil production has declined significantly over the years. The primary objective was to evaluate the feasibility of carbon dioxide(CO_(2)) storage through its injection into the siliciclastic reservoirs of Ankleshwar Formation. We aimed to obtain high-resolution acoustic impedance data to estimate porosity employing model-based poststack seismic inversion. We conducted an analysis of the density and effective porosity in the target zone through geostatistical techniques and probabilistic neural networks. Simultaneously, the work also involved geomechanical analysis through the computation of pore pressure and fracture gradient using well-log data, geological information, and drilling events in the Gandhar field. Our investigation unveiled spatial variations in effective porosity within the Hazad Member of the Ankleshwar Formation, with an effective porosity exceeding 25% observed in several areas, which indicates the presence of well-connected pore spaces conducive to efficient CO_(2) migration. Geomechanical analysis showed that the vertical stress(Sv) ranged from 55 MPa to 57 MPa in Telwa and from 63.7 MPa to 67.7 MPa in Hazad Member. The pore pressure profile displayed variations along the stratigraphic sequence, with the shale zone, particularly in the Kanwa Formation, attaining the maximum pressure gradient(approximately 36 MPa). However, consistently low pore pressure values(30-34 MPa) considerably below the fracture gradient curves were observed in Hazad Member due to depletion. The results from our analysis provide valuable insights into shaping future field development strategies and exploration of the feasibility of CO_(2) sequestration in Gandhar Field. 展开更多
关键词 Carbon capture and storage Reservoir characterization Seismic inversion GEOMECHANICS co_(2)storage co_(2)enhancing oil recovery
下载PDF
Analysis of pressure response at an observation well against pressure build-up by early stage of CO_(2)geological storage project
4
作者 Qiang Sun Kyuro Sasaki +3 位作者 Qinxi Dong Zhenni Ye Hui Wang Huan Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期470-482,共13页
To ensure a safe and stable CO_(2)storage,pressure responses at an observation well are expected to be an important and useful field monitoring item to estimate the CO_(2)storage behaviors and the aquifer parameters d... To ensure a safe and stable CO_(2)storage,pressure responses at an observation well are expected to be an important and useful field monitoring item to estimate the CO_(2)storage behaviors and the aquifer parameters during and after injecting CO_(2),because it can detect whether the injected CO_(2)leaks to the ground surface or the bottom of the sea.In this study,pressure responses were simulated to present design factors such as well location and pressure transmitter of the observation well.Numerical simulations on the pressure response and the time-delay from pressure build-up after CO_(2)injection were conducted by considering aquifer parameters and distance from the CO_(2)injection well to an observation well.The measurement resolution of a pressure transmitter installed in the observation well was presented based on numerical simulation results of the pressure response against pressure build-up at the injection well and CO_(2)plume front propagations.Furthermore,the pressure response at an observation well was estimated by comparing the numerical simulation results with the curve of CO_(2)saturation and relative permeability.It was also suggested that the analytical solution can be used for the analysis of the pressure response tendency using pressure build-up and dimensionless parameters of hydraulic diffusivity.Thus,a criterion was established for selecting a pressure transducer installed at an observation well to monitor the pressure responses with sufficient accuracy and resolution,considering the distance from the injection well and the pressure build-up at the injection well,for future carbon capture and storage(CCS)projects. 展开更多
关键词 co_(2)storage Saline aquifer Observation well Pressure response co_(2)saturation
下载PDF
A multi-mechanism numerical simulation model for CO_(2)-EOR and storage in fractured shale oil reservoirs
5
作者 Yuan-Zheng Wang Ren-Yi Cao +3 位作者 Zhi-Hao Jia Bin-Yu Wang Ming Ma Lin-Song Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1814-1828,共15页
Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and ... Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs. 展开更多
关键词 co_(2)-EOR co_(2)storage Shale oil reservoir complex fracture model Multiple mechanisms
下载PDF
Enhanced gas production and CO_(2) storage in hydrate-bearing sediments via pre-depressurization and rapid CO_(2) injection
6
作者 Hongnan Chen Yifei Sun +5 位作者 Bojian Cao Minglong Wang Ming Wang Jinrong Zhong Changyu Sun Guangjin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期126-134,共9页
Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In t... Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate. 展开更多
关键词 HYDRATE DEPRESSURIZATION co_(2) storage CH_(4) production Reservoir remediation
下载PDF
3D seismic forward modeling from the multiphysical inversion at the Ketzin CO_(2) storage site
7
作者 Yi-kang Zheng Chong Wang +2 位作者 Hao-hong Liang Yi-bo Wang Rong-shu Zeng 《Applied Geophysics》 SCIE CSCD 2024年第3期593-605,620,共14页
From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migr... From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection. 展开更多
关键词 Seismic forward modeling reservoir simulation co_(2)storage time-lapse analysis
下载PDF
A hybrid physics-informed data-driven neural network for CO_(2) storage in depleted shale reservoirs
8
作者 Yan-Wei Wang Zhen-Xue Dai +3 位作者 Gui-Sheng Wang Li Chen Yu-Zhou Xia Yu-Hao Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期286-301,共16页
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s... To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs. 展开更多
关键词 Deep learning Physics-informed data-driven neural network Depleted shale reservoirs co_(2)storage Transport mechanisms
下载PDF
Investigation of gravity influence on EOR and CO_(2) geological storage based on pore-scale simulation
9
作者 Yong-Mao Hao Gui-Cheng Wu +6 位作者 Zong-Fa Li Zhong-Hui Wu Yong-Quan Sun Ran Liu Xing-Xing Li Bo-Xin Pang Nan Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期987-1001,共15页
Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid proper... Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid property-composition relationship,a mathematical model for pore-scale CO_(2) injection in oilsaturated porous media was developed in this study.The model can reflect the effects of gravity assistance,component diffusion,fluid density variation,and velocity change on EOR and CO_(2) storage.For nonhomogeneous porous media,the gravity influence and large density difference help to minimize the velocity difference between the main flow path and the surrounding area,thus improving the oil recovery and CO_(2) storage.Large CO_(2) injection angles and oil-CO_(2) density differences can increase the oil recovery by 22.6% and 4.2%,respectively,and increase CO_(2) storage by 37.9% and 4.7%,respectively.Component diffusion facilitates the transportation of the oil components from the low-velocity region to the main flow path,thereby reducing the oil/CO_(2) concentration difference within the porous media.Component diffusion can increase oil recovery and CO_(2) storage by 5.7% and 6.9%,respectively.In addition,combined with the component diffusion,a low CO_(2) injection rate creates a more uniform spatial distribution of the oil/CO_(2) component,resulting in increases of 9.5% oil recovery and 15.7% CO_(2) storage,respectively.This study provides theoretical support for improving the geological CO_(2) storage and EOR processes. 展开更多
关键词 GRAVITY Flow simulation co_(2)-oil mixing Enhanced oil recovery(EOR) Geological storage
下载PDF
Assessment of CO_(2)storage prospect based on physical properties of Rio Bonito Formation rock units
10
作者 Richardson M.Abraham-A Stephanie San Martín Cañas +1 位作者 Isabella F.S.Miranda Colombo C.G.Tassinari 《Energy Geoscience》 EI 2024年第1期321-330,共10页
The physical properties of the rock units associated with the Rio Bonito Formation are presented in this study with the focus on modelling reservoir quality based on petrophysics-derived parameters to evaluate CO_(2)s... The physical properties of the rock units associated with the Rio Bonito Formation are presented in this study with the focus on modelling reservoir quality based on petrophysics-derived parameters to evaluate CO_(2)storage potentials.It involves the modelling of the reservoir depths,thicknesses,flow zone indicators(FZI),and effective permeability(Keff)and presenting the CO_(2)storage efficiency factors peculiar to the rock units of the study location.Research results presented by this study for the stated objectives are not quite common in the region.Keff values range from 200 mD to higher than 2000 mD,and FZI values are generally above 1.0 mm and up to 13.0 mm within the portions covered by the drilled wells.The sandstone units recorded are up to 20 m thick in some cases.The Keff and FZI models indicate the sandstone reservoirs as permeable units to support the injection and circulation of CO_(2)within the potential reservoir units of the Rio Bonio Formation across São Paulo State.Apart from some points in the southeastern part of the study location,where the Rio Bonito are delineated at depths less than 800 m(minimum CO_(2)storage depth based on best practices),other portions are deeper,ranging from 950 m to 3500 m.Thin-bedded layers will affect the integrity of the rocks as CO_(2)storage tanks or reservoir seals/traps/overburden within the region.Sandstone bed thicknesses are up to 20 m in some cases.However,hybrid CO_(2)reservoir units are feasible,especially in portions where thin siltstone layers are sandwiched between sandstone units to provide considerable thicknesses based on CO_(2)storage standards.The current study shows that useable areas considering reservoir thickness,depth,and other physical qualities will significantly control the CO_(2)storage efficiency of the study location.Further studies featuring a detailed geophysical exploration of the site to confirm the availability and saturations of preexisting fluid(hydrocarbon and water)are encouraged to boost CO_(2)storage in the region.The related research-based results,as mentioned above,may be combined with the results of this research to determine the area's potentials for CO_(2)storage or hydrocarbon production with CO_(2)storage options. 展开更多
关键词 Rio Bonito Effective permeability Fluid transmissibility co_(2)storage prospect Reservoir quality Overburden integrity Flow zones
下载PDF
Hydrocarbon indication in Rio Bonito Formation sandstone:Implication for CO_(2)storage in São Paulo,Brazil
11
作者 Richardson M.Abraham-A Haline V.Rocha +2 位作者 Saulo B.de Oliveira Colombo C.G.Tassinarri Orlando C.da Silva 《Energy Geoscience》 EI 2024年第1期331-341,共11页
São Paulo State has witnessed CO_(2)storage-based investigations considering the availability of suitable geologic structures and proximity to primary CO_(2)source sinks related to bioenergy and carbon capture an... São Paulo State has witnessed CO_(2)storage-based investigations considering the availability of suitable geologic structures and proximity to primary CO_(2)source sinks related to bioenergy and carbon capture and storage(BECCS)activities.The current study presents the hydrocarbon viability evaluations and CO_(2)storage prospects,focusing on the sandstone units of the Rio Bonito Formation.The objective is to apply petrophysical evaluations with geochemical inputs in predicting future hydrocarbon(gas)production to boost CO_(2)storage within the study location.The study used data from eleven wells with associated wireline logs(gamma ray,resistivity,density,neutron,and sonic)to predict potential hydrocarbon accumulation and fluid mobility in the investigated area.Rock samples(shale and carbonate)obtained from depths>200 m within the study location have shown bitumen presence.Organic geochemistry data of the Rio Bonito Formation shale beds suggest they are potential hydrocarbon source rocks and could have contributed to the gas accumulations within the sandstone units.Some drilled well data,e.g.,CB-1-SP and TI-1-SP,show hydrocarbon(gas)presence based on the typical resistivity and the combined neutron-density responses at depths up to 3400 m,indicating the possibility of other hydrocarbon members apart from the heavy oil(bitumen)observed from the near-surface rocks samples.From the three-dimensional(3-D)model,the free fluid indicator(FFI)is more significant towards the southwest and southeast of the area with deeper depths of occurrence,indicating portions with reasonable hydrocarbon recovery rates and good prospects for CO_(2)injection,circulation and permanent storage.However,future studies based on contemporary datasets are required to establish the hydrocarbon viability further,foster gas production events,and enhance CO_(2)storage possibilities within the region. 展开更多
关键词 ParanáBasin Hydrocarbon indication Sandstone reservoirs Rio Bonito FORMATION co_(2)storage Hydrocarbon recovery factor Fluid injection rate
下载PDF
海洋CO_(2)地质封存研究进展与发展趋势 被引量:2
12
作者 赵金洲 郑建超 +2 位作者 任岚 林然 周博 《大庆石油地质与开发》 CAS 北大核心 2024年第1期1-13,共13页
CO_(2)捕集、利用和封存是中国实现“双碳”目标的核心技术,也是全球研究的热点。CO_(2)地质封存是其中的关键环节,特别是海洋CO_(2)地质封存是今后的重点发展方向。以国内外海洋CO_(2)地质封存的发展历程为基础,结合典型CO_(2)海洋封... CO_(2)捕集、利用和封存是中国实现“双碳”目标的核心技术,也是全球研究的热点。CO_(2)地质封存是其中的关键环节,特别是海洋CO_(2)地质封存是今后的重点发展方向。以国内外海洋CO_(2)地质封存的发展历程为基础,结合典型CO_(2)海洋封存示范项目案例,系统梳理了国内外海洋CO_(2)地质封存理论研究进展,分析了CO_(2)在井筒流动、相变与传热、CO_(2)流体运移与储层物性参数展布规律、海洋地质封存机制及封存潜力、地质封存盖层完整性及安全性评估等方面的研究现状。认识到中国目前对海底地质结构中CO_(2)注入过程的多相态转化、溶解、捕获传质特征及动力学特性认识尚浅,对海洋封存机制及不同封存机制之间的相互作用机理尚不明确,未来应开展海洋CO_(2)动态地质封存空间重构机制研究,解决地质封存相态转化及流体动态迁移机理等关键科学问题,揭示海洋CO_(2)地质封存机制的相互作用机理,形成适用于中国海洋地质封存CO_(2)高效注入和增效封存方法。 展开更多
关键词 co_(2)地质封存 海洋 co_(2)捕集、利用与封存(CCUS) 双碳 碳中和
下载PDF
纳米SiO_(2)强化CO_(2)地质封存页岩盖层封堵能力机制试验 被引量:1
13
作者 李颖 李茂茂 +4 位作者 李海涛 周军平 LEONHARD Ganzer 罗红文 康夫馨 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期92-98,共7页
页岩为CO_(2)盐水层地质封存常见盖层岩石类型,强化盖层封堵能力有利于提高CO_(2)地质埋存量和安全性。为探究随CO_(2)混注纳米SiO_(2)(SNPs)强化盖层封堵能力的有效性和可行性,对CO_(2)地质封存页岩盖层样品开展原地条件下的超临界CO_... 页岩为CO_(2)盐水层地质封存常见盖层岩石类型,强化盖层封堵能力有利于提高CO_(2)地质埋存量和安全性。为探究随CO_(2)混注纳米SiO_(2)(SNPs)强化盖层封堵能力的有效性和可行性,对CO_(2)地质封存页岩盖层样品开展原地条件下的超临界CO_(2)酸蚀反应试验,基础组为页岩样品-地层水、对照组为页岩样品-地层水+超临界CO_(2)、优化组为页岩样品-地层水+SNPs+超临界CO_(2),并采用核磁共振测试、场发射扫描电镜可视化观测、X射线衍射测试和岩石力学试验,探究CO_(2)酸蚀反应前后的页岩孔隙结构、表面形貌、矿物成分及力学性质特征。结果表明:优化组的大孔孔隙分量及孔隙度和渗透率增大幅度低于对照组;与对照组相比,优化组黏土矿物与碳酸盐岩矿物相对含量损失少,表明随CO_(2)混注SNPs可使岩样内部酸蚀作用减弱;SNPs在岩石端面吸附聚集或进入岩心孔喉,可使优化组页岩样品力学性能损伤程度降低;随CO_(2)混注SNPs有利于强化CO_(2)盐水层地质封存盖层封堵能力。 展开更多
关键词 co_(2)地质封存 纳米二氧化硅 超临界co_(2) 盖层封堵能力
下载PDF
三河尖关闭煤矿煤层CO_(2)封存潜力研究 被引量:2
14
作者 钱静 易高峰 +4 位作者 周琦忠 汤志刚 彭一轩 王阳 陈尚斌 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第3期258-268,共11页
关闭煤矿煤层CO_(2)地质封存是CO_(2)封存的重要方式之一,也是短期内实现碳减排指标的有效手段之一。以江苏省徐州市三河尖关闭煤矿为例,分析了已采7号煤和9号煤的煤岩煤质特征,统计了剩余煤炭资源储量,运用模糊综合评价法,选取了稳定... 关闭煤矿煤层CO_(2)地质封存是CO_(2)封存的重要方式之一,也是短期内实现碳减排指标的有效手段之一。以江苏省徐州市三河尖关闭煤矿为例,分析了已采7号煤和9号煤的煤岩煤质特征,统计了剩余煤炭资源储量,运用模糊综合评价法,选取了稳定系数、上覆岩层性质、地质构造复杂程度、地下水指标、封存煤层压温比、封存煤层深厚比、封存煤层渗透率、采空塌陷程度和其他因素等9个主要影响因素指标对7号煤和9号煤封存CO_(2)稳定性进行评价,建立关闭煤矿煤层CO_(2)封存评价方法并评估CO_(2)封存潜力。结果表明,三河尖关闭煤矿7号煤和9号煤剩余储量较大,CO_(2)封存稳定性综合评价结果分别为86.209和87.698,评价等级均为较稳定,封存潜力较高。根据建立的关闭煤矿煤层CO_(2)封存评价方法,计算获得三河尖关闭煤矿7号和9号煤层CO_(2)理论封存量分别为207.6 Mt和80.9 Mt,并据此划分封存有利区为有利区、较有利区和不利区3个等级。研究可为关闭煤矿煤层CO_(2)封存研究提供基础依据。 展开更多
关键词 关闭煤矿 煤层co_(2)封存 稳定性评价 封存潜力 三河尖煤矿 碳封存
下载PDF
一种基于“四区”的低渗透油藏CO_(2)埋存量计算方法及应用 被引量:1
15
作者 王香增 陈小凡 +3 位作者 李剑 陈芳萍 范庆振 王剑 《特种油气藏》 CAS CSCD 北大核心 2024年第3期78-84,共7页
CO_(2)驱油和埋存能有效减少温室气体排放量达到碳中和目标,已有的CO_(2)埋存量计算方法主要针对CO_(2)的静态埋存量进行粗略计算,未考虑实际生产过程中CO_(2)埋存量的变化。针对上述问题,运用CO_(2)溶解、CO_(2)波及体积和驱油机理,将C... CO_(2)驱油和埋存能有效减少温室气体排放量达到碳中和目标,已有的CO_(2)埋存量计算方法主要针对CO_(2)的静态埋存量进行粗略计算,未考虑实际生产过程中CO_(2)埋存量的变化。针对上述问题,运用CO_(2)溶解、CO_(2)波及体积和驱油机理,将CO_(2)驱油与埋存过程分为气相区、两相或近混相区、扩散区和油相区,并基于“四区法”计算CO_(2)埋存量,得到了不同烃类的注入孔隙体积倍数、注入压力、注气速度下的CO_(2)动态埋存量的变化规律。将研究成果应用于W油田低渗储层,结果表明:注入烃类孔隙体积倍数、压力、注气速度与总埋存量呈正相关性,当压力由12 MPa升至30 MPa,CO_(2)埋存总量增加15.53×10^(4)t;当注气速度由5 t/d增加至30 t/d,峰值CO_(2)埋存总量由3.51×10^(4)t提高至12.62×10^(4)t。研究成果可为同类油藏开展CO_(2)驱油与埋存项目提供新的思路。 展开更多
关键词 CCUS co_(2)埋存 “四区”法 低渗储层
下载PDF
中深层稠油水平井前置CO_(2)蓄能压裂技术 被引量:1
16
作者 杨兆臣 卢迎波 +5 位作者 杨果 黄纯 弋大琳 贾嵩 吴永彬 王桂庆 《岩性油气藏》 CAS CSCD 北大核心 2024年第1期178-184,共7页
利用准噶尔盆地西北缘乌夏地区中深层稠油油藏参数,对水平井前置CO_(2)蓄能压裂技术的开发机理、关键操作参数及开发效果进行了详细研究。研究结果表明:①伴随压裂—焖井—生产等开发阶段的延伸,前置CO_(2)蓄能压裂后的油井逐步显现出... 利用准噶尔盆地西北缘乌夏地区中深层稠油油藏参数,对水平井前置CO_(2)蓄能压裂技术的开发机理、关键操作参数及开发效果进行了详细研究。研究结果表明:①伴随压裂—焖井—生产等开发阶段的延伸,前置CO_(2)蓄能压裂后的油井逐步显现出增能改造、扩散降黏、膨胀补能、释压成泡沫油流等特性,井底流压提高了2~4MPa,CO_(2)扩散至油藏的1/3,原油黏度降至500mPa·s以下,泡沫油流明显;②研究区最优压裂段间距为60m、裂缝半长为90m、裂缝导流能力为10t/m,CO_(2)最佳注入强度为1.5m3/m,注入速度为1.8m3/min,油井焖井时间为30d,油藏采收率提高了2%~3%;③通过与常规压裂生产效果进行对比,前置CO_(2)蓄能压裂技术可使产油量提高5.2t/d,预测CO_(2)换油率达2.45,开发效果显著提升。 展开更多
关键词 中深层稠油 水平井 二氧化碳蓄能压裂 低碳采油 乌夏地区 准噶尔盆地
下载PDF
CO_(2)原位矿化选址关键参数及其封存潜力评估研究进展 被引量:1
17
作者 张敏 叶航 +6 位作者 包琦 刘琦 荆铁亚 袁浩伟 赵文韬 王晓龙 鲜成钢 《化工进展》 EI CAS CSCD 北大核心 2024年第3期1492-1505,F0004,共15页
温室气体特别是二氧化碳的大量排放,是导致全球变暖的主要原因之一。根据国际能源署的报道,碳捕集利用和封存(CCUS)技术是缓解全球气候变化的重要措施之一,约占累计碳减排量的15%。原位矿化封存技术基于快速CO_(2)矿化机制,以镁铁质岩... 温室气体特别是二氧化碳的大量排放,是导致全球变暖的主要原因之一。根据国际能源署的报道,碳捕集利用和封存(CCUS)技术是缓解全球气候变化的重要措施之一,约占累计碳减排量的15%。原位矿化封存技术基于快速CO_(2)矿化机制,以镁铁质岩石和超镁铁质岩石(玄武岩、橄榄岩等)地层为碳封存位点,利用CO_(2)与富含Ca、Mg元素矿物的矿化反应,转变为稳定的碳酸盐,从而达到永久且高效封存CO_(2)的目的。冰岛和美国的中试项目已经证明了该技术的可行性,但中国尚未进行相关示范项目。本文介绍了原位矿化封存技术的机理、CO_(2)封存潜力的评估手段及其面临的风险与挑战,讨论了已开展的案例项目及其技术细节,梳理了实施该技术所必需的选址关键参数(包括源-汇距离、矿物类型、注入性、封闭性等),并基于目前研究对其前景进行展望,以期提高我国对原位矿化技术的认识和重视,为推动该领域进一步发展提供理论指导。 展开更多
关键词 co_(2)原位矿化 co_(2)地质封存 玄武岩 选址参数 封存潜力
下载PDF
胜利油田CO_(2)高压混相驱油与封存理论技术及矿场实践
18
作者 杨勇 张世明 +6 位作者 曹小朋 吕琦 吕广忠 张传宝 李宗阳 张东 郑文宽 《石油勘探与开发》 EI CAS CSCD 北大核心 2024年第5期1080-1091,共12页
针对胜利油田开展CO_(2)驱油与封存面临的原油轻烃含量低混相难、储层非均质性强波及效率低、易气窜全过程调控难等问题,通过室内实验、技术攻关和矿场实践,形成CO_(2)高压混相驱油与封存理论及关键技术。研究发现,提高地层压力至1.2倍... 针对胜利油田开展CO_(2)驱油与封存面临的原油轻烃含量低混相难、储层非均质性强波及效率低、易气窜全过程调控难等问题,通过室内实验、技术攻关和矿场实践,形成CO_(2)高压混相驱油与封存理论及关键技术。研究发现,提高地层压力至1.2倍最小混相压力之上,可以提高原油中的中重质组分混相能力,增大小孔隙中的原油动用程度,均衡驱替前缘,扩大波及体积。通过超前压驱补能实现快速高压混相,采用梯级气水交替、注采耦合、多级化学调堵等技术全过程动态调控渗流阻力,实现采收率与封存率的协同最优。研究成果应用于高89-樊142 CCUS(二氧化碳捕集、利用与封存)示范区,区块日产油由254.6 t提高至358.2 t,预计实施15年可提高采出程度11.6个百分点,为CCUS规模化应用提供理论和技术支撑。 展开更多
关键词 低渗透油藏 co_(2)驱 高压混相 采收率 封存率 示范工程
下载PDF
不同超临界CO_(2)浸蚀时间后冲击煤体能量演化与破坏特征
19
作者 王磊 杨震宇 +4 位作者 陈礼鹏 王勇 张帅 王安铖 李伟利 《岩土力学》 EI CAS CSCD 北大核心 2024年第8期2251-2262,共12页
在未采煤层封存CO_(2)时,注入的CO_(2)受高温高压影响会处于超临界态,影响煤层稳定性。为研究超临界CO_(2)浸蚀后煤体受扰动影响引起的能量耗散与破坏特征,基于自主研发的高压气体吸附/解吸试验系统对煤体开展不同超临界CO_(2)浸蚀时间(... 在未采煤层封存CO_(2)时,注入的CO_(2)受高温高压影响会处于超临界态,影响煤层稳定性。为研究超临界CO_(2)浸蚀后煤体受扰动影响引起的能量耗散与破坏特征,基于自主研发的高压气体吸附/解吸试验系统对煤体开展不同超临界CO_(2)浸蚀时间(0、2、4、6 d)的吸附试验,利用分离式霍普金森压杆试验系统对超临界CO_(2)作用后的煤体开展冲击压缩试验,并结合高速摄像仪拍摄了冲击过程,分析了冲击煤体的能量耗散规律,阐明了煤体的破坏裂纹演化与破碎分形特征。研究结果表明:相同冲击荷载下,不同超临界CO_(2)浸蚀时间后煤样的应力-应变曲线变化趋势类似,可划分为弹性能量耗散、塑性能量耗散和峰后能量耗散3个阶段。随超临界CO_(2)浸蚀时间增长,煤样吸能能力减弱,冲击煤样表面裂纹数量增多,裂纹网络及扩展方向逐渐复杂,煤样破碎更加剧烈,破碎粒径减小,破碎形态更加复杂,最后确定了不同浸蚀时间后煤样破碎分形维数与耗能密度的线性相关关系。研究结果对于开展注CO_(2)强化深部煤层气开采工程探索具有一定的理论意义。 展开更多
关键词 co_(2)地质封存 超临界co_(2) 冲击荷载 能量耗散 破碎分形
下载PDF
CO_(2)−荷载耦合作用下煤体细观统计损伤本构模型及验证
20
作者 王磊 陈礼鹏 +4 位作者 谢广祥 范浩 李少波 邹鹏 张宇 《煤炭学报》 EI CAS CSCD 北大核心 2024年第6期2630-2642,共13页
CO_(2)吸附会对煤体产生损伤劣化作用进而降低其稳定性,对CO_(2)封存的长期安全性提出挑战,明确CO_(2)劣化作用并建立本构模型至关重要。采用损伤力学理论和统计理论推导出能够综合反映CO_(2)吸附和荷载耦合作用下煤体总损伤变量的计算... CO_(2)吸附会对煤体产生损伤劣化作用进而降低其稳定性,对CO_(2)封存的长期安全性提出挑战,明确CO_(2)劣化作用并建立本构模型至关重要。采用损伤力学理论和统计理论推导出能够综合反映CO_(2)吸附和荷载耦合作用下煤体总损伤变量的计算公式,并重点考虑了压密段的影响,分段建立了CO_(2)作用下煤体的细观统计损伤本构方程,明确了模型各参数的确定方法。最后通过CT扫描实验系统、MTS 816实验系统确定了本构模型参数,并采用自主研制的气−固耦合实验系统对不同CO_(2)压力下煤体进行了单轴压缩实验,验证了模型的合理性。研究结果表明:①基于CT扫描获取的裂隙率和运用Weibull分布理论分别定义了吸附和受载作用下的损伤变量,结合损伤理论进一步得到二者耦合作用下的总损伤变量,并建立了细观统计损伤本构模型;②基于CT扫描技术的裂隙三维重构真实反映了CO_(2)作用前后裂隙扩展特征,CO_(2)压力越高,裂隙扩展越充分,煤样三维裂隙参数和损伤变量越大,所形成的空间裂隙网络越复杂;③CO_(2)对煤体力学性质劣化作用显著,煤体的抗压强度与弹性模量随CO_(2)压力增加分别降低了49.78%和22.63%,CO_(2)对煤体的溶胀效应、塑化效应和气楔效应的综合作用导致了力学参数的降低;④建立的CO_(2)作用下煤体细观统计损伤模型理论曲线与单轴实验曲线具有较高的吻合度,说明损伤本构模型能够较好地反映出CO_(2)对煤体力学特性的损伤劣化作用,体现了损伤本构模型及模型参数确定方法的合理性与适用性。 展开更多
关键词 co_(2)地质封存 本构模型 损伤变量 力学特性 裂隙演化
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部