Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and ...Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs.展开更多
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s...To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs.展开更多
CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability...CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can...CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can also cause severe CO_(2) gas channeling problems.Therefore,anti-gas channeling is a necessary measure to improve the effect of CO_(2) flooding.The kind of anti-gas channeling refers to the plugging of fractures in the deep formation to prevent CO_(2) gas channeling,which is different from the wellbore leakage.Polymer microspheres have the characteristics of controllable deep plugging,which can achieve the profile control of low-permeability fractured reservoirs.In acidic environments with supercritical CO_(2),traditional polymer microspheres have poor expandability and plugging properties.Based on previous work,a systematic evaluation of the expansion performance,dispersion rheological properties,stability,deep migration,anti-CO_(2) channeling and enhanced oil recovery ability of a novel acid-resistant polymer microsphere(DCNPM-A)was carried out under CQ oilifield conditions(salinity of85,000 mg/L,80℃,pH=3).The results show that the DCNPM-A microsphere had a better expansion performance than the traditional microsphere,with a swelling rate of 13.5.The microsphere dispersion with a concentration of 0.1%-0.5%had the advantages of low viscosity,high dispersion and good injectability in the low permeability fractured core.In the acidic environment of supercritical CO_(2),DCNPM-A microspheres showed excellent stability and could maintain strength for over 60 d with less loss.In core experiments,DCNPM-A microspheres exhibited delayed swelling characteristics and could effectively plug deep formations.With a plugging rate of 95%,the subsequent enhanced oil recovery of CO_(2) flooding could reach 21.03%.The experimental results can provide a theoretical basis for anti-CO_(2)channeling and enhanced oil recovery in low-permeability fractured reservoirs.展开更多
Water flooding can be ineffective in highly heterogeneous low-permeability beach-bar sand reservoirs.The introduction of CO_(2)flooding helps boost the oil production of the reservoirs but only in an early stage.Durin...Water flooding can be ineffective in highly heterogeneous low-permeability beach-bar sand reservoirs.The introduction of CO_(2)flooding helps boost the oil production of the reservoirs but only in an early stage.During the late stage of flooding,gas channeling would occur.Water alternating gas(CO_(2))(WAG)process can be used to delay gas channeling and improve the effect of CO_(2)injection,though its adaptability to beach-bar sand reservoirs remains unclear.In order to clarify CO_(2)injection characteristics in these reservoirs,experiments were carried out in high-temperature high-pressure NMR on-line displacement experiment apparatus to simulate different flooding modes on synthetic cores that can reflect the vertical heterogeneity of beach-bar reservoirs.Different CO_(2)injection modes were implemented on these cores and the displacement characteristics and residual oil distribution features during both WAG injection and continuous CO_(2)injection were analyzed quantitatively and qualitatively.The results show that the scheme of WAG injection after continuous CO_(2)injection can obtain better oil displacement efficiency than that of the scheme of continuous CO_(2)injection after WAG injection,but there is no significant difference in respect of oil displacement efficiency of WAG flooding between the mode of bar-injection e beach-production(injection into bar sand e production from beach sand)and the mode of beach-injection e beach-production(injection into and production from beach sand),with the former mode having a higher oil recovery rate.The wider pore-size distribution range of microscopic residual oil after WAG injection shows great potential of enhancing oil recovery from subsequent continuous gas injection.When WAG injection is implemented prior to continuous CO_(2)injection,the displacement effect of the latter is more significant.This research may provide a theoretical basis for CO_(2)EOR in this type of reservoirs.展开更多
"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China..."Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG.展开更多
Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the inje...Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.展开更多
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-Major Project-Research on Tight Oil-Shale Oil Reservoir Engineering Methods and Key Technologies in Ordos Basin(No.ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015)。
文摘Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs.
基金This work is funded by National Natural Science Foundation of China(Nos.42202292,42141011)the Program for Jilin University(JLU)Science and Technology Innovative Research Team(No.2019TD-35).The authors would also like to thank the reviewers and editors whose critical comments are very helpful in preparing this article.
文摘To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs.
基金supported by the Cutting-Edge Project Foundation of Petro-China(Cold-Based Method to Enhance Heavy Oil Recovery)(Grant No.2021DJ1406)Open Fund(PLN201802)of National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University).
文摘CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金supported by the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum (East China) (SKLDOG2024-ZYRC-06)Key Program of National Natural Science Foundation of China (52130401)+2 种基金National Natural Science Foundation of China (52104055,52250410349)Major Science and Technology Project of China National Petroleum Corporation Limited (2021ZZ01-08)Shandong Provincial Natural Science Foundation,China (ZR2021ME171)。
文摘CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can also cause severe CO_(2) gas channeling problems.Therefore,anti-gas channeling is a necessary measure to improve the effect of CO_(2) flooding.The kind of anti-gas channeling refers to the plugging of fractures in the deep formation to prevent CO_(2) gas channeling,which is different from the wellbore leakage.Polymer microspheres have the characteristics of controllable deep plugging,which can achieve the profile control of low-permeability fractured reservoirs.In acidic environments with supercritical CO_(2),traditional polymer microspheres have poor expandability and plugging properties.Based on previous work,a systematic evaluation of the expansion performance,dispersion rheological properties,stability,deep migration,anti-CO_(2) channeling and enhanced oil recovery ability of a novel acid-resistant polymer microsphere(DCNPM-A)was carried out under CQ oilifield conditions(salinity of85,000 mg/L,80℃,pH=3).The results show that the DCNPM-A microsphere had a better expansion performance than the traditional microsphere,with a swelling rate of 13.5.The microsphere dispersion with a concentration of 0.1%-0.5%had the advantages of low viscosity,high dispersion and good injectability in the low permeability fractured core.In the acidic environment of supercritical CO_(2),DCNPM-A microspheres showed excellent stability and could maintain strength for over 60 d with less loss.In core experiments,DCNPM-A microspheres exhibited delayed swelling characteristics and could effectively plug deep formations.With a plugging rate of 95%,the subsequent enhanced oil recovery of CO_(2) flooding could reach 21.03%.The experimental results can provide a theoretical basis for anti-CO_(2)channeling and enhanced oil recovery in low-permeability fractured reservoirs.
文摘Water flooding can be ineffective in highly heterogeneous low-permeability beach-bar sand reservoirs.The introduction of CO_(2)flooding helps boost the oil production of the reservoirs but only in an early stage.During the late stage of flooding,gas channeling would occur.Water alternating gas(CO_(2))(WAG)process can be used to delay gas channeling and improve the effect of CO_(2)injection,though its adaptability to beach-bar sand reservoirs remains unclear.In order to clarify CO_(2)injection characteristics in these reservoirs,experiments were carried out in high-temperature high-pressure NMR on-line displacement experiment apparatus to simulate different flooding modes on synthetic cores that can reflect the vertical heterogeneity of beach-bar reservoirs.Different CO_(2)injection modes were implemented on these cores and the displacement characteristics and residual oil distribution features during both WAG injection and continuous CO_(2)injection were analyzed quantitatively and qualitatively.The results show that the scheme of WAG injection after continuous CO_(2)injection can obtain better oil displacement efficiency than that of the scheme of continuous CO_(2)injection after WAG injection,but there is no significant difference in respect of oil displacement efficiency of WAG flooding between the mode of bar-injection e beach-production(injection into bar sand e production from beach sand)and the mode of beach-injection e beach-production(injection into and production from beach sand),with the former mode having a higher oil recovery rate.The wider pore-size distribution range of microscopic residual oil after WAG injection shows great potential of enhancing oil recovery from subsequent continuous gas injection.When WAG injection is implemented prior to continuous CO_(2)injection,the displacement effect of the latter is more significant.This research may provide a theoretical basis for CO_(2)EOR in this type of reservoirs.
基金The work was supported by the National Natural Science Foundation of China(No.52074316)PetroChina Company Limited(No.2019E-2608).
文摘"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG.
文摘Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.