期刊文献+
共找到10,594篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of moisture and carbonate additions on CO_2 emission from calcareous soil during closed–jar incubation 被引量:6
1
作者 YanJie DONG Miao CAI JianBin ZHOU 《Journal of Arid Land》 SCIE CSCD 2014年第1期37-43,共7页
Calcareous soil contains organic and inorganic carbon(C) pools,which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to so... Calcareous soil contains organic and inorganic carbon(C) pools,which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to soil moisture,but the exact effect of water content on CO2 emission from calcareous soil is unclear. The objective of this experiment was to determine the effect of soil water content(air-dried,30%,70%,and 100% water-holding capacity(WHC)),carbonate type(CaCO3 or MgCO3),and carbonate amount(0.0,1.0%,and 2.0%) on CO2 emission from calcareous soil during closed-jar incubation. Soil CO2 emission increased significantly as the water content increased to 70% WHC,regardless of whether or not the soil was amended with carbonates. Soil CO2 emission remained the same or increased slowly as the soil water content increased from 70% WHC to 100% WHC. When the water content was ≤30% WHC,soil CO2 emission from soil amended with 1.0% inorganic C was greater than that from unamended soil. When the soil water content was 70% or 100% WHC,CO2 emission from CaCO3 amended soil was greater than that from the control. Furthermore,CO2 emission from soil amended with 2.0% CaCO3 was greater than that from soil amended with 1.0% CaCO3. Soil CO2 emission was higher in the MgCO3 amended soil than from the unamended soil. Soil CO2 emission decreased as the MgCO3 content increased. Cumulative CO2 emission was 3-6 times higher from MgCO3 amended soil than from CaCO3 amended soil. There was significant interaction effect between soil moisture and carbonates on CO2 emission. Soil moisture plays an important role in CO2 emission from calcareous soil because it affects both biotic and abiotic processes during the closed-jar incubation. 展开更多
关键词 calcareous soil soil moisture organic carbon CO2 emission
下载PDF
EFFECTS OF WATER TABLE AND NITROGEN ADDITION ON CO_2 EMISSION FROM WETLAND SOIL 被引量:7
2
作者 YANG Ji-song LIU Jing-shuang +3 位作者 YU Jun-bao WANG Jin-da QIN Sheng-jin LI Xin-hua 《Chinese Geographical Science》 SCIE CSCD 2005年第3期262-268,共7页
Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence respo... Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (Ⅰ) and a fluctuant water table (Ⅳ), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%-57% higher than that at static high water table (Ⅱ and Ⅲ). After nitrogen addition, however, highest CO2 emission was found at Ⅱ and lowest emission at Ⅲ. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland. 展开更多
关键词 CO2 emission water table nitrogen addition wetland soil
下载PDF
Soil CO_2 evolution from Korean pine virgin forest at Changbai Mountain
3
作者 马越强 延晓冬 杨思河 《Journal of Forestry Research》 SCIE CAS CSCD 1998年第3期192-194,共3页
The soil CO2 evolution rate was measured in a virpin Korean pine forest. The results in June showed that the lowest value of evolution rate was 220 mg /(m2·h) and appeared at 6:00 a.m. The highest value was 460 m... The soil CO2 evolution rate was measured in a virpin Korean pine forest. The results in June showed that the lowest value of evolution rate was 220 mg /(m2·h) and appeared at 6:00 a.m. The highest value was 460 mg /(m2·h) at 18:00. The rates of CO2 evolution were related with soil temperature. On the basis of the constructed regression equation and the monthly average values of temperature, the magnitude of CO2 evolution from Korean pine forest soil was 10.4 t /hm2 during a growing season. 展开更多
关键词 soil CO_2 evolution Korean pine forest Regression equation
下载PDF
Effects of long-term elevated CO_2 on N_2-fixing,denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain 被引量:4
4
作者 郑俊强 韩士杰 +2 位作者 任飞荣 周玉梅 张岩 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第4期283-287,共5页
A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete... A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P 〈 0.012) and August 2006 (P 〈 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities. 展开更多
关键词 elevated CO2 forest soil nitrifying enzyme denitrifying enzyme N2-fixing enzyme
下载PDF
The contribution of root respiration of Pinus koraiensis seedlings to total soil respiration under elevated CO_2 concentrations 被引量:14
5
作者 刘颖 韩士杰 +3 位作者 李雪峰 周玉梅 张军辉 贾夏 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第3期187-191,共5页
The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to Oc... The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration of Pinus koraiensis seedlings were measured by a LI-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil in-stantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 靘olm 2s-1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. 展开更多
关键词 Contribution of root respiration Elevated CO2 Pinus koraiensis Root-severed technique soil respiration
下载PDF
Major factors controlling nitrous oxide emission and methane uptake from forest soil 被引量:3
6
作者 张秀君 陈冠雄 徐慧 《Journal of Forestry Research》 SCIE CAS CSCD 2001年第4期239-242,277,共5页
Soil samples were taken from depth of 0-12 cm in virgin broad-leaved Korean pine mixed forest in Changbai Moun-tain in July 2000. The effects of temperature, soil water content, pH, NH4+ and NO3- on N2O emission and C... Soil samples were taken from depth of 0-12 cm in virgin broad-leaved Korean pine mixed forest in Changbai Moun-tain in July 2000. The effects of temperature, soil water content, pH, NH4+ and NO3- on N2O emission and CH4 uptake of a for-est soil were studied in laboratory by the method of orthogonal design. It was observed under laboratory conditions in this study that there were significant correlations between N2O emission rate, CH4 oxidation rate, soil pH and temperature. Nevertheless, N2O emission rate also showed a significant positive correlation with CH4 oxidation rate. The results suggested that pH and temperature were important factors controlling N2O emission and CH4 oxidation under this experiment conditions. 展开更多
关键词 N2O emission CH4 uptake Orthogonal design Forest soil
下载PDF
Influence of CO_2 Doubling on Water Transport Process at Root/Soil Interface of Pinus sylvestris var. sylvestriformis Seedlings 被引量:3
7
作者 韩士杰 张军辉 +2 位作者 周玉梅 王琛瑞 邹春静 《Acta Botanica Sinica》 CSCD 2001年第4期385-388,共4页
Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductanc... Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process. 展开更多
关键词 CO 2 doubling Pinus sylvestris var. sylvestriformis seedlings root/soil interface water transport electric conductance of soil
下载PDF
CHANGES OF ATMOSPHERIC CO_2, PHOTOSYNTHESIS OF THE GRASS LAYER AND SOIL CO_2 EVOLUTION IN A TYPICAL TEMPERATE DECIDUOUS FOREST STAND IN THE MOUNTAINOUS AREAS OF BEIJING 被引量:2
8
作者 蒋高明 韩兴国 周广胜 《Acta Botanica Sinica》 CSCD 1997年第7期653-660,共8页
Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which ... Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which is a typical temperate forest ecosystem in the mountainous areas of Beijing. Changes of CO2 concentrations in both the atmosphere (2m above canopy) and the forest canopy (2m below the top of the canopy) together with those of net photosynthesis and soil CO2 evolution were also examined, in order to find the characteristics of CO2 exchange between the different components of the temperate forest ecosystem and the atmosphere. Atmospheric CO2 averaged (323+10) and (330+1) mol mol-1 respectively in summer and autumn. During the 24-hour measurements, large differences as much as -46 and -61 mol mol-1 respectively in the atmosphere and forest were found. Net photosynthesis of the grass layer in summer was (2. 59 9+ 1.05) mol CO2 m-2 S-1, two times of that in autumn, (1.31+0.39) mol CO2 s-1 In summer, there was much more CO2 evolved from soil than in autumn, averaging (5.18+0.75) mol CO2 m-2 s-1 and (1.96 + 0.57) (mol CO2 m-2 s-1, respectively. A significant correlation was found between soil CO2 evolution and ground temperature, with F =-0.864 2+0.310 1X,r=0.7164, P<0.001 (n=117). Both the minimal atmospheric CO2 level and the maximum net photosynthesis occurred around 14:00; and an increase in atmospheric CO2 and of soil CO2 evolution during night times were also found to be remarkable. 展开更多
关键词 Gas exchange PHOTOSYNTHESIS soil CO2 evolution CO2 Temperate forest
下载PDF
Responses of soil enzymes to long-term CO_2 enrichment in forest ecosystems of Changbai Mountains
9
作者 辛丽花 韩士杰 +2 位作者 李莉 周玉梅 郑俊强 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第2期119-122,共4页
A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystem... A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement. 展开更多
关键词 CO2 concentration CO2 enrichment soil enzymes INVERTASE DEHYDROGENASE CATALASE Polyphenol oxidase
下载PDF
Effect of Measurement Time on Emission Flux of CO_2 and N_2O in Black Soil Region
10
作者 乔云发 韩晓增 赵兰坡 《Agricultural Science & Technology》 CAS 2012年第2期361-364,共4页
[Objective] The aim was to investigate and reveal effect of measurement time on emission flux of CO2 and N2O to ensure the optimum time of emission flux, in order to provide scientific reference for emission reduction... [Objective] The aim was to investigate and reveal effect of measurement time on emission flux of CO2 and N2O to ensure the optimum time of emission flux, in order to provide scientific reference for emission reduction of greenhouse gas in black soil region. [Method] Based on experiment of long-term fertilizer location in black soil region, the paper studied on daily dynamic variation of CO2 and N2O discharge in 3 key growth periods (booting stage, grain-filling stage and mature stage) to reveal differences of CO2 and N2O emission flux in different times. [Result] Daily variations of CO2 and N2O emission flux were large, from 205 mg/(m2·h) to 552 mg/(m2·h) for CO2 and from 51 h to 295 μg/(m2·h) for N2O. Trend of CO2 discharge in different growth times showed a unimodal curve, and the peak was at noon of 12:00 and the peak valley was at 3:00 am; discharge of N2O was small in day time at booting stage and large at night. Regardless of rice growth period effect on CO2 and N2O emission flux, representative time of CO2 discharge was 6:00-8:00 or 16:00-21:00; and time of N2O was 8:00-10:00 or 16:00-21:00; if CO2 and N2O emission fluxes were measured simultaneously, the optimum time was 16:00-18:00; if the measurement was started during 9:00-12:00, correction coefficients of CO2 and N2O were 0.81 and 0.90, respectively. [Conclusion] The result provided scientific reference for reduction of greenhouse gas emission in black soil region. 展开更多
关键词 CO2 N2O Black soil Measurement time
下载PDF
Dynamics of Soil CO_2 Profiles of Pinus sylvestris var. sylvestriformis Seedlings Under CO_2 Concentration Doubled
11
作者 韩士杰 张军辉 +1 位作者 周玉梅 邹春静 《Acta Botanica Sinica》 CSCD 2002年第7期852-857,共6页
The gas_well system permanently installed in the soil was adopted for studying the dynamic relationship between CO 2 profiles and seedling root growth of Pinus sylvestris var. sylvestriformis (Takenouchi) Che... The gas_well system permanently installed in the soil was adopted for studying the dynamic relationship between CO 2 profiles and seedling root growth of Pinus sylvestris var. sylvestriformis (Takenouchi) Cheng et C. D. Chu. The study was conducted in the Open Research Station of Changbai Mountain Forest Ecological System, The Chinese Academy of Sciences from 1999 to 2001. Four treatments were arranged in the rectangular open_top chambers (OTCs): ambient CO 2+no_seedling, 700 μmol/mol CO 2+no_seedling, ambient CO 2 +seedlings, 700 μmol/mol CO 2+seedlings. By collecting and analyzing soil gas synchronously, it was found that the dynamics of CO 2 profiles were related to the biological activity of seedlings. There were more roots distributed in the top soil and the boundary layer across soil and sand, which made more contributions to the CO 2 profiles due to respiration root. Compared with the ambient CO 2, elevated CO 2 led to the peak of CO 2 concentration distribution shifted from soil surface layer to the boundary layer as seasonally growing of seedling roots. It is suggested the gas_well system is an inexpensive, non_destructive and relatively sensitive method for study of soil CO 2 concentration profiles. 展开更多
关键词 CO 2_doubled soil CO 2 profiles gas well Pinus sylvestris var. sylvestriformis seedlings root distribution
下载PDF
Effects of free iron oxyhydrates and soil organic matter on copper sorption-desorption behavior by size fractions of aggregates from two paddy soils 被引量:14
12
作者 WANG Fang, PAN Genxing, LI Lianqing Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第5期618-624,共7页
Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthro... Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthrosol (Soil H) and Gleyic Stagnic Anthrosol (Soil W)) were investigated with and without treatments of dithionite-citrate-bicarbonate and of H2O2. The size fractions of aggregates were obtained from the undisturbed bulk topsoil using a low energy ultrasonic dispersion procedure. Experiments of equilibrium sorption and subsequent desorption were conducted at soil water ratio of 1:20, 25℃. For Soil H, Cu^2+ sorption capacity of the DCB-treated size fractions was decreased by 5.9% for fine sand fraction, by 40.4% for coarse sand fraction, in comparison to 2.9% for the bnlk sample. However, Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by over 80% for the coarse sand fraction and by 15% for the clay-sized fraction in comparison to 88% for bulk soil. For Soil W, Cu^2+ sorption capacity of the DCB-treated size fraction was decreased by 30% for the coarse sand fraction and by over 75% for silt sand fraction in comparison to 44.5% for the bulk sample. Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by only 2.0% for the coarse sand fraction and by 15% for the fine sand fraction in comparison to by 3.4% for bulk soil. However, Cu^2+ desorption rates were increased much in H2O2-treated samples by over 80% except the clay-sized fraction (only 9.5%) for Soil H. While removal of SOM with H2O2 tendend to increase the desorption rate, DCB- and H2O2-treatments caused decrease in Cu^2+ retention capacity of size fractions, Particularly, there hardly remained Cu^2+ retention capacity by size fractions from Soil H after H2O2 treatment except for clay-sized fraction. These findings supported again the dominance of the coarse sand fraction in sorption of metals and the preference of absorbed metals bound to SOM in differently stabilized status among the size fractions. Thus, enrichment and turnover of SOM in paddy soils may have great effects on metal retention and chemical mobility in paddy soils. 展开更多
关键词 paddy soils Cn^2+ sorption-desorption soil organic matter free iron oxyhydrates size fraction of aggregates
下载PDF
Comparative study on CO_2 emissions from different types of alpine meadows during grass exuberance period 被引量:9
13
作者 HUQiwu CAOGuangmin +2 位作者 WUQin LIDong WANGYuesi 《Journal of Geographical Sciences》 SCIE CSCD 2004年第2期167-176,共10页
Potentilla fruticosascrub, Kobresia humilismeadow and Kobresia tibeticameadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4 September, based on close chamber-... Potentilla fruticosascrub, Kobresia humilismeadow and Kobresia tibeticameadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4 September, based on close chamber-GC method, a study on CO 2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO 2 emission rates from various treatments were 672.09±152.37 mgm -2 h -1 for FC (grass treatment); 425.41±191.99 mgm -2 h -1 for FJ (grass exclusion treatment); 280.36±174.83 mgm -2 h -1 for FL (grass and roots exclusion treatment); 838.95±237.02 mgm -2 h -1 for GG (scrub+grass treatment); 528.48±205.67 mgm -2 h -1 for GC (grass treatment); 268.97±99.72 mgm -2 h -1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm -2 h -1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilismeadow, Potentilla fruticosascrub meadow and Kobresia tibeticameadow differed greatly in average CO 2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia humilismeadow, heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosascrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from GG; 49% and 51% from GC. In addition, root respiration from Kobresia humilismeadow approximated 145 mgCO 2 m -2 h -1 , contributed 34% to soil respiration. During the experiment period, Kobresia humilismeadow and Potentilla fruticosascrub meadow had a net carbon fixation of 111.11 gm -2 and 243.89 gm -2 , respectively. Results also showed that soil temperature was the main factor which influenced CO 2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO 2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO 2 emission from Kobresia tibeticameadow, and more detailed analyses should be done in further research. 展开更多
关键词 CO_2 alpine meadow grass exuberance period soil respiration TREATMENT
下载PDF
Soil CO_2 flux in relation to dissolved organic carbon,soil temperature and moisture in a subtropical arable soil of China 被引量:2
14
作者 LOUYun-sheng LIZhong-pei ZHANGTao-lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第5期715-720,共6页
Soil CO 2 emission from an arable soil was measured by closed chamber method to quantify year round soil flux and to develop an equation to predict flux using soil temperature, dissolved organic carbon(DOC) and soil... Soil CO 2 emission from an arable soil was measured by closed chamber method to quantify year round soil flux and to develop an equation to predict flux using soil temperature, dissolved organic carbon(DOC) and soil moisture content. Soil CO 2 flux, soil temperature, DOC and soil moisture content were determined on selected days during the experiment from August 1999 to July 2000, at the Ecological Station of Red Soil, the Chinese Academy of Sciences, in a subtropical region of China. Soil CO 2 fluxes were generally higher in summer and autumn than in winter and spring, and had a seasonal pattern more similar to soil temperature and DOC than soil moisture. The estimation was 2 23 kgCO 2/(m 2·a) for average annual soil CO 2 flux. Regressed separately, the reasons for soil flux variability were 86 6% from soil temperature, 58 8% from DOC, and 26 3% from soil moisture, respectively. Regressed jointly, a multiple equation was developed by the above three variables that explained approximately 85 2% of the flux variance, however by stepwise regression, soil temperature was the dominant affecting soil flux. Based on the exponential equation developed from soil temperature, the predicted annual flux was 2 49 kgCO 2/(m 2·a), and essentially equal to the measured one. It is suggested the exponential relationship between soil flux and soil temperature could be used for accurately predicting soil CO 2 flux from arable soil in subtropical regions of China. 展开更多
关键词 soil CO 2 flux soil temperature DOC soil moisture arable soil
下载PDF
Temporal Variability in Soil CO_2 Emission in an Orchard Forest Ecosystem 被引量:10
15
作者 LI Yue-Lin D. OTIENO +4 位作者 K. OWEN ZHANG Yun J. TENHUNEN RAO Xing-Quan LIN Yong-Biao 《Pedosphere》 SCIE CAS CSCD 2008年第3期273-283,共11页
Temporal variability in soil CO2 emission from an orchard was measured using a dynamic open-chamber system for measuring soil CO2 effiux in Heshan Guangdong Province, in the lower subtropical area of China. Intensive ... Temporal variability in soil CO2 emission from an orchard was measured using a dynamic open-chamber system for measuring soil CO2 effiux in Heshan Guangdong Province, in the lower subtropical area of China. Intensive measurements were conducted for a period of 12 months. Soil CO2 emissions were also modeled by multiple regression analysis from daily air temperature, dry-bulb saturated vapor pressure, relative humidity, atmospheric pressure, soil moisture, and soil temperature. Data was analyzed based on soil moisture levels and air temperature with annual data being grouped into either hot-humid season or relatively cool season based on the precipitation patterns. This was essential in order to acquire simplified exponential models for parameter estimation. Minimum and maximum daily mean soil CO2 effiux rates were observed in November and July, with respective rates of 1.98 ± 0.66 and 11.04 ± 0.96 μmol m^-2 s^-1 being recorded. Annual average soil CO2 emission (FCO2) was 5.92 μmol m^-2 s^-1. Including all the weather variables into the model helped to explain 73.9% of temporal variability in soil CO2 emission during the measurement period. Soil CO2 effiux increased with increasing soil temperature and soil moisture. Preliminary results showed that Q10, which is defined as the difference in respiration rates over a 10 ℃ interval, was partly explained by fine root biomass. Soil temperature and soil moisture were the dominant factors controlling soil CO2 effiux and were regarded as the driving variables for CO2 production in the soil. Including these two variables in regression models could provide a useful tool for predicting the variation of CO2 emission in the commercial forest Soils of South China . 展开更多
关键词 CO2 emission lower subtropical area orchard forest ecosystem soil moisture soil temperature
下载PDF
Effects of Atmospheric CO_2 Enrichment, Applied Nitrogen and Soil Moisture on Dry Matter Accumulation and Nitrogen Uptake in Spring Wheat 被引量:18
16
作者 LIFUSHENG KANGSHAOZHONG 《Pedosphere》 SCIE CAS CSCD 2002年第3期207-218,共12页
Spring wheat (Triticum aestivum L. cv. Dingxi No. 8654) was treated with twoconcentrations of atmospheric CO_2 (350 and 700 μmol mol^(-1)), two levels of soil moisture(well-watered and drought) and five rates of nitr... Spring wheat (Triticum aestivum L. cv. Dingxi No. 8654) was treated with twoconcentrations of atmospheric CO_2 (350 and 700 μmol mol^(-1)), two levels of soil moisture(well-watered and drought) and five rates of nitrogen fertilizer (0, 50, 100, 150, and 200 mgkg^(-1) soil) to study the atmospheric CO_2 concentration effect on dry matter accumulation and Nuptake of spring wheat. The effects of CO_2 enrichment on the shoot and total mass depended largelyon soil nitrogen level, and the shoot and total mass increased significantly in the moderate to highN treatments but did not increase significantly in the low N treatment. Enriched CO_2 concentrationdid not increase more shoot and total mass in the drought treatment than in the well-wateredtreatment. Thus, elevated CO_2 did not ameliorate the depressive effects of drought and nitrogenstress. In addition, root mass decreased slightly and root/shoot ratio decreased significantly dueto CO_2 enrichment in no N treatment under well-watered condition. Enriched CO_2 decreased shoot Ncontent and shoot and total N uptake; but it reduced root N content and uptake slightly. Shootcritical N concentration was lower for spring wheat grown at 700 μmol mol^(-1) CO_2 than at 350μmol mol^(-1) CO_2 in both well-watered and drought treatments. The critical N concentrations were16 and 19 g kg^(-1) for the well-watered treatment and drought treatment at elevated CO_2 and 21 and26 g kg^(-1) at ambient CO_2, respectively. The reductions in the movement of nutrients to theplant roots through mass flow due to the enhancement in WUE (water use efficiency) and the increasein N use efficiency at elevated CO_2 could elucidate the reduction of shoot and root Nconcentrations. 展开更多
关键词 CO_2 enrichment critical N concentration dry matter nitrogen uptake soilmoisture
下载PDF
Microbial Activity in a Temperate Forest Soil as Affected by Elevated Atmospheric CO_2 被引量:5
17
作者 ZHENG Jun-Qiang HAN Shi-Jie ZHOU Yu-Mei REN Fei-Rong XIN Li-Hua ZHANG Yan 《Pedosphere》 SCIE CAS CSCD 2010年第4期427-435,共9页
Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on... Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on soil microbial C and N immobilization and on soil enzyme activities, in years 8 (2006) and 9 (2007) of an open-top chamber experiment that begun in spring of 1999, soil was sampled in summer, and microbial biomass and enzyme activity related to the carbon (C), nitrogen (N) and phosphorus (P) cycling were measured. Although no effects on microbial biomass C were detected, changes in microbial biomass N and metabolic activity involving C, N and P were observed under elevated CO2. Invertase and .dehydrogenase activities were significantly enhanced by different degrees of elevated CO2. Nitrifying enzyme activity was significantly (P 〈 0.01) increased in the August 2006 samples that received the elevated COs treatment, as compared to the samples that received the ambient treatment. Denitrifying enzyme activity was significantly (P 〈 0.04) decreased by elevated COs treatments in the August 2006 and June 2007 (P 〈 0.09) samples, β-N-acetylglucosaminidase activity was increased under elevated CO2 by 7% and 25% in June and August 2006, respectively, compared to those under ambient CO2. The results of June 2006 samples showed that acid phosphatase activity was significantly enhanced under elevated CO2. Overall, these results suggested that elevated CO2 might cause changes in the belowground C, N and P cycling in temperate forest soils. 展开更多
关键词 CO2 enrichment microbial biomass soil carbon cycling soil nitrogen cycling
下载PDF
Nitrous oxide fluxes from upland soils in central Hokkaido,Japan 被引量:10
18
作者 Sonoko D.KIMURA Yo TOMA Ryusuke HATANO 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第11期1312-1322,共11页
Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November),for three years,in a total of 11 upland crop fields in central Hokkaido... Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November),for three years,in a total of 11 upland crop fields in central Hokkaido,Japan.The annual mean N2O fluxes ranged from 2.95 to 164.17 μgN/(m2·h),with the lowest observed in a grassland and the highest in an onion field.The instantaneous N2O fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall eve... 展开更多
关键词 mineral N pool N2O flux soil upland cropping system
下载PDF
Comparison of Urea-Derived N_2O Emission from Soil and Soil-Plant System 被引量:5
19
作者 CHENLIJUN O.VANCLEEMPUT 《Pedosphere》 SCIE CAS CSCD 2000年第3期207-212,共6页
A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that a... A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that after urea fertilizer applied, the N2O emission from soil and soil-wheat system decreased exponentially with time, and its total amount was 0.34%~0.63% and 0.33%~0.58% of applied urea-N respectively, no significant difference being found between these two systems. The N2O emission had a very significant negative relationship (P = 0.01) with the biomass of wheat plant. A combined application of urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide could reduce the N2O emission by 50%~83% and 46%~74%, respectivelyl from soil and soil-wheat system. The N2O was mainly produced and emitted from soil, and the soil biochemical regulation, i.e., applying related inhibitors into soil could effectively diminish the urea derived N2O emission. 展开更多
关键词 N2O emission soil soil-plant system URE
下载PDF
Modeling the contribution of abiotic exchange to CO_2 flux in alkaline soils of arid areas 被引量:3
20
作者 WenFeng WANG Xi CHEN +1 位作者 GePing LUO LongHui LI 《Journal of Arid Land》 SCIE CSCD 2014年第1期27-36,共10页
Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil CO2 flux(Fc).However,both the overall contribution of abiotic CO2 exchange and its drivers remain unknown.He... Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil CO2 flux(Fc).However,both the overall contribution of abiotic CO2 exchange and its drivers remain unknown.Here we analyzed the environmental variables suggested as possible drivers by previous studies and constructed a function of these variables to model the contribution of abiotic exchange to Fc in alkaline soils of arid areas.An automated flux system was employed to measure Fc in the Manas River Basin of Xinjiang Uygur autonomous region,China.Soil pH,soil temperature at 0–5 cm(Ts),soil volumetric water content at 0–5 cm(θs)and air temperature at10 cm above the soil surface(Tas)were simultaneously analyzed.Results highlight reduced sensitivity of Fc to Ts and good prediction of Fc by the model Fc=R10Q10(Tas–10)/10+r7q7(pH–7)+λTas+μθs+e which represents Fc as a sum of biotic and abiotic components.This presents an approximate method to quantify the contribution of soil abiotic CO2 exchange to Fc in alkaline soils of arid areas. 展开更多
关键词 soil respiration temperature sensitivity Q10 model soil abiotic CO2 exchange soil alkalinity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部