We first report discovery of the spinel-garnet-orthopyroxene granulite with pure CO2 fluid inclusions from the Fuyun region of the late Paleozoic Altay orogenic belt in Central Asia, NW China. The rock is characterize...We first report discovery of the spinel-garnet-orthopyroxene granulite with pure CO2 fluid inclusions from the Fuyun region of the late Paleozoic Altay orogenic belt in Central Asia, NW China. The rock is characterized by an assemblage of garnet, orthopyroxene, spinel, cordierite, biotite, plagioclase and quartz. Symplectites of orthopyroxene and spinel, and orthopyroxene and cordierite indicate decompression under UHT conditions. Mineral chemistry shows that the or-thopyroxenes have high XMg and A12O3 contents (up to 9.23 wt%). Biotites are enriched in TiO2 and XMg and are stable under granulite facies conditions. The garnet and quartz from the rock carry monophase fluid inclusions which show peak melting temperatures of around -56.7℃, indicating a pure CO2 species being presented during the ultrahigh-T metamorphism in the Altay orogenic belt. The inclusions homogenize into a liquid phase at temperatures around 15.3-23.8℃ translating into CO2 densities of the order of 0.86-0.88 g/cm3. Based on preliminary mineral paragenesis, reaction textures and petrogenetic grid considerations, we infer that the rock was subjected to UHT conditions. The CO2-rich fluids were trapped during exhumation along a clockwise P-T path following isothermal decompression under UHT conditions.展开更多
The density of CO<sub>2</sub> inclusions in minerals is commonly used to determine the crystallizing conditions of the host minerals.However,the conventional microthermometry method is difficult to apply f...The density of CO<sub>2</sub> inclusions in minerals is commonly used to determine the crystallizing conditions of the host minerals.However,the conventional microthermometry method is difficult to apply for inclusions that are small in size(【5-10μm) or low in density.Raman analysis is an alternative method for determining CO<sub>2</sub> density,provided that展开更多
Mold flux serves the crucial metallurgical function of absorbing inclusions, directly impacting the smoothness of the casting process as well as the cast slab quality. In this study, the dissolution behavior and mecha...Mold flux serves the crucial metallurgical function of absorbing inclusions, directly impacting the smoothness of the casting process as well as the cast slab quality. In this study, the dissolution behavior and mechanism of Ti O_(2)and Ti N inclusions in molten Ca O–Si O_(2)–B_(2)O_(3)-based fluorine-free mold flux were explored by in situ single hot thermocouple technology combined with X-ray photoelectron spectroscopy.The results showed that Ti O_(2) inclusions are effectively dissolved by the molten slag within 76 s, during which the original octahedral [Ti O_(6)]^(8-)structures are destroyed and convert to the networker tetrahedral [Ti O_(4)]^(4-)structures. However, the dissolution rate is much lower for Ti N inclusions than for Ti O_(2)inclusions. This can be attributed to the fact that the Ti N particles need to be oxidized and then dissolved in the molten slag to form tetrahedral [Ti O4]4-and octahedral [Ti O_(6)]^(8-)structures during the Ti N inclusion dissolution process, which is accompanied by the generation of a large amount of N_(2)gas. Moreover, Ca Ti O_(3)crystals tend to nucleate and grow on bubble surfaces with sufficient octahedral [Ti O_(6)]^(8-)structures and Ca^(2+)ions, eventually resulting in the molten slag being in a solid–liquid mixed state.展开更多
文摘We first report discovery of the spinel-garnet-orthopyroxene granulite with pure CO2 fluid inclusions from the Fuyun region of the late Paleozoic Altay orogenic belt in Central Asia, NW China. The rock is characterized by an assemblage of garnet, orthopyroxene, spinel, cordierite, biotite, plagioclase and quartz. Symplectites of orthopyroxene and spinel, and orthopyroxene and cordierite indicate decompression under UHT conditions. Mineral chemistry shows that the or-thopyroxenes have high XMg and A12O3 contents (up to 9.23 wt%). Biotites are enriched in TiO2 and XMg and are stable under granulite facies conditions. The garnet and quartz from the rock carry monophase fluid inclusions which show peak melting temperatures of around -56.7℃, indicating a pure CO2 species being presented during the ultrahigh-T metamorphism in the Altay orogenic belt. The inclusions homogenize into a liquid phase at temperatures around 15.3-23.8℃ translating into CO2 densities of the order of 0.86-0.88 g/cm3. Based on preliminary mineral paragenesis, reaction textures and petrogenetic grid considerations, we infer that the rock was subjected to UHT conditions. The CO2-rich fluids were trapped during exhumation along a clockwise P-T path following isothermal decompression under UHT conditions.
文摘The density of CO<sub>2</sub> inclusions in minerals is commonly used to determine the crystallizing conditions of the host minerals.However,the conventional microthermometry method is difficult to apply for inclusions that are small in size(【5-10μm) or low in density.Raman analysis is an alternative method for determining CO<sub>2</sub> density,provided that
基金financially supported by the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX20220357)the National Science Foundation of China (No.52130408)。
文摘Mold flux serves the crucial metallurgical function of absorbing inclusions, directly impacting the smoothness of the casting process as well as the cast slab quality. In this study, the dissolution behavior and mechanism of Ti O_(2)and Ti N inclusions in molten Ca O–Si O_(2)–B_(2)O_(3)-based fluorine-free mold flux were explored by in situ single hot thermocouple technology combined with X-ray photoelectron spectroscopy.The results showed that Ti O_(2) inclusions are effectively dissolved by the molten slag within 76 s, during which the original octahedral [Ti O_(6)]^(8-)structures are destroyed and convert to the networker tetrahedral [Ti O_(4)]^(4-)structures. However, the dissolution rate is much lower for Ti N inclusions than for Ti O_(2)inclusions. This can be attributed to the fact that the Ti N particles need to be oxidized and then dissolved in the molten slag to form tetrahedral [Ti O4]4-and octahedral [Ti O_(6)]^(8-)structures during the Ti N inclusion dissolution process, which is accompanied by the generation of a large amount of N_(2)gas. Moreover, Ca Ti O_(3)crystals tend to nucleate and grow on bubble surfaces with sufficient octahedral [Ti O_(6)]^(8-)structures and Ca^(2+)ions, eventually resulting in the molten slag being in a solid–liquid mixed state.