"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China..."Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG.展开更多
The physical properties of the rock units associated with the Rio Bonito Formation are presented in this study with the focus on modelling reservoir quality based on petrophysics-derived parameters to evaluate CO_(2)s...The physical properties of the rock units associated with the Rio Bonito Formation are presented in this study with the focus on modelling reservoir quality based on petrophysics-derived parameters to evaluate CO_(2)storage potentials.It involves the modelling of the reservoir depths,thicknesses,flow zone indicators(FZI),and effective permeability(Keff)and presenting the CO_(2)storage efficiency factors peculiar to the rock units of the study location.Research results presented by this study for the stated objectives are not quite common in the region.Keff values range from 200 mD to higher than 2000 mD,and FZI values are generally above 1.0 mm and up to 13.0 mm within the portions covered by the drilled wells.The sandstone units recorded are up to 20 m thick in some cases.The Keff and FZI models indicate the sandstone reservoirs as permeable units to support the injection and circulation of CO_(2)within the potential reservoir units of the Rio Bonio Formation across São Paulo State.Apart from some points in the southeastern part of the study location,where the Rio Bonito are delineated at depths less than 800 m(minimum CO_(2)storage depth based on best practices),other portions are deeper,ranging from 950 m to 3500 m.Thin-bedded layers will affect the integrity of the rocks as CO_(2)storage tanks or reservoir seals/traps/overburden within the region.Sandstone bed thicknesses are up to 20 m in some cases.However,hybrid CO_(2)reservoir units are feasible,especially in portions where thin siltstone layers are sandwiched between sandstone units to provide considerable thicknesses based on CO_(2)storage standards.The current study shows that useable areas considering reservoir thickness,depth,and other physical qualities will significantly control the CO_(2)storage efficiency of the study location.Further studies featuring a detailed geophysical exploration of the site to confirm the availability and saturations of preexisting fluid(hydrocarbon and water)are encouraged to boost CO_(2)storage in the region.The related research-based results,as mentioned above,may be combined with the results of this research to determine the area's potentials for CO_(2)storage or hydrocarbon production with CO_(2)storage options.展开更多
São Paulo State has witnessed CO_(2)storage-based investigations considering the availability of suitable geologic structures and proximity to primary CO_(2)source sinks related to bioenergy and carbon capture an...São Paulo State has witnessed CO_(2)storage-based investigations considering the availability of suitable geologic structures and proximity to primary CO_(2)source sinks related to bioenergy and carbon capture and storage(BECCS)activities.The current study presents the hydrocarbon viability evaluations and CO_(2)storage prospects,focusing on the sandstone units of the Rio Bonito Formation.The objective is to apply petrophysical evaluations with geochemical inputs in predicting future hydrocarbon(gas)production to boost CO_(2)storage within the study location.The study used data from eleven wells with associated wireline logs(gamma ray,resistivity,density,neutron,and sonic)to predict potential hydrocarbon accumulation and fluid mobility in the investigated area.Rock samples(shale and carbonate)obtained from depths>200 m within the study location have shown bitumen presence.Organic geochemistry data of the Rio Bonito Formation shale beds suggest they are potential hydrocarbon source rocks and could have contributed to the gas accumulations within the sandstone units.Some drilled well data,e.g.,CB-1-SP and TI-1-SP,show hydrocarbon(gas)presence based on the typical resistivity and the combined neutron-density responses at depths up to 3400 m,indicating the possibility of other hydrocarbon members apart from the heavy oil(bitumen)observed from the near-surface rocks samples.From the three-dimensional(3-D)model,the free fluid indicator(FFI)is more significant towards the southwest and southeast of the area with deeper depths of occurrence,indicating portions with reasonable hydrocarbon recovery rates and good prospects for CO_(2)injection,circulation and permanent storage.However,future studies based on contemporary datasets are required to establish the hydrocarbon viability further,foster gas production events,and enhance CO_(2)storage possibilities within the region.展开更多
基金The work was supported by the National Natural Science Foundation of China(No.52074316)PetroChina Company Limited(No.2019E-2608).
文摘"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG.
基金sponsored by Fundação de AmparoàPesquisa do Estado de São Paulo(FAPESP)(2014/50279-4,2020/15230-5,2021/06158-1)Shell Brasil.
文摘The physical properties of the rock units associated with the Rio Bonito Formation are presented in this study with the focus on modelling reservoir quality based on petrophysics-derived parameters to evaluate CO_(2)storage potentials.It involves the modelling of the reservoir depths,thicknesses,flow zone indicators(FZI),and effective permeability(Keff)and presenting the CO_(2)storage efficiency factors peculiar to the rock units of the study location.Research results presented by this study for the stated objectives are not quite common in the region.Keff values range from 200 mD to higher than 2000 mD,and FZI values are generally above 1.0 mm and up to 13.0 mm within the portions covered by the drilled wells.The sandstone units recorded are up to 20 m thick in some cases.The Keff and FZI models indicate the sandstone reservoirs as permeable units to support the injection and circulation of CO_(2)within the potential reservoir units of the Rio Bonio Formation across São Paulo State.Apart from some points in the southeastern part of the study location,where the Rio Bonito are delineated at depths less than 800 m(minimum CO_(2)storage depth based on best practices),other portions are deeper,ranging from 950 m to 3500 m.Thin-bedded layers will affect the integrity of the rocks as CO_(2)storage tanks or reservoir seals/traps/overburden within the region.Sandstone bed thicknesses are up to 20 m in some cases.However,hybrid CO_(2)reservoir units are feasible,especially in portions where thin siltstone layers are sandwiched between sandstone units to provide considerable thicknesses based on CO_(2)storage standards.The current study shows that useable areas considering reservoir thickness,depth,and other physical qualities will significantly control the CO_(2)storage efficiency of the study location.Further studies featuring a detailed geophysical exploration of the site to confirm the availability and saturations of preexisting fluid(hydrocarbon and water)are encouraged to boost CO_(2)storage in the region.The related research-based results,as mentioned above,may be combined with the results of this research to determine the area's potentials for CO_(2)storage or hydrocarbon production with CO_(2)storage options.
基金sponsored by Fundação de Amparoa Pesquisa do Estado de São Paulo(FAPESP)(2014/50279-4,2020/15230-5,2021/06158-1)Shell Brasil.
文摘São Paulo State has witnessed CO_(2)storage-based investigations considering the availability of suitable geologic structures and proximity to primary CO_(2)source sinks related to bioenergy and carbon capture and storage(BECCS)activities.The current study presents the hydrocarbon viability evaluations and CO_(2)storage prospects,focusing on the sandstone units of the Rio Bonito Formation.The objective is to apply petrophysical evaluations with geochemical inputs in predicting future hydrocarbon(gas)production to boost CO_(2)storage within the study location.The study used data from eleven wells with associated wireline logs(gamma ray,resistivity,density,neutron,and sonic)to predict potential hydrocarbon accumulation and fluid mobility in the investigated area.Rock samples(shale and carbonate)obtained from depths>200 m within the study location have shown bitumen presence.Organic geochemistry data of the Rio Bonito Formation shale beds suggest they are potential hydrocarbon source rocks and could have contributed to the gas accumulations within the sandstone units.Some drilled well data,e.g.,CB-1-SP and TI-1-SP,show hydrocarbon(gas)presence based on the typical resistivity and the combined neutron-density responses at depths up to 3400 m,indicating the possibility of other hydrocarbon members apart from the heavy oil(bitumen)observed from the near-surface rocks samples.From the three-dimensional(3-D)model,the free fluid indicator(FFI)is more significant towards the southwest and southeast of the area with deeper depths of occurrence,indicating portions with reasonable hydrocarbon recovery rates and good prospects for CO_(2)injection,circulation and permanent storage.However,future studies based on contemporary datasets are required to establish the hydrocarbon viability further,foster gas production events,and enhance CO_(2)storage possibilities within the region.