期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类 被引量:7
1
作者 国贤玉 李坤 +2 位作者 王志勇 李宏宇 杨知 《国土资源遥感》 CSCD 北大核心 2018年第4期20-27,共8页
种类和种植方式的不同会导致水稻长势、产量的差异。精细区分不同水稻品种与种植方式,能够为水稻长势监测与估产提供更精准的信息。紧致极化SAR(compact polarimetry synthetic aperture Radar,CP-SAR)作为新一代对地观测SAR系统的重要... 种类和种植方式的不同会导致水稻长势、产量的差异。精细区分不同水稻品种与种植方式,能够为水稻长势监测与估产提供更精准的信息。紧致极化SAR(compact polarimetry synthetic aperture Radar,CP-SAR)作为新一代对地观测SAR系统的重要发展趋势之一,同时兼具相对丰富的极化信息和较大的幅宽,为大范围水稻精细制图提供了可能。本研究首先利用RADARSAT-2全极化SAR数据模拟CP-SAR数据,并提取了22个CP-SAR特征参数;然后,针对CP-SAR多维特征信息,引入基于支持向量机和序列前进搜寻策略(support vector machine+sequential forward selection,SVM+SFS)的特征选择方法,构建基于决策树和SVM的水稻精细分类方法,得到了水稻精细分类的最优特征子集。实验结果表明,基于决策树的水稻精细分类方法可以获得较好的分类结果,总体精度达92. 57%,Kappa系数达0. 896,与全部特征参数进行分类的结果相比,总体精度高1. 2%,Kappa系数大0. 016。 展开更多
关键词 CP-SAR SVM + SFS 水稻田 决策树分类 多时相
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部