Based on a 10-year simulation of six Regional Climate Models(RCMs) in phase II of the Regional Climate Model Inter-Comparison Project(RMIP) for Asia,the multivariate statistical method of common principal components(C...Based on a 10-year simulation of six Regional Climate Models(RCMs) in phase II of the Regional Climate Model Inter-Comparison Project(RMIP) for Asia,the multivariate statistical method of common principal components(CPCs) is used to analyze and compare the spatiotemporal characteristics of temperature and precipitation simulated by multi-RCMs over China,including the mean climate states and their seasonal transition,the spatial distribution of interannual variability,and the interannual variation.CPC is an effective statistical tool for analyzing the results of different models.Compared with traditional statistical methods,CPC analyses provide a more complete statistical picture for observation and simulation results.The results of CPC analyses show that the climatological means and the characteristics of seasonal transition over China can be accurately simulated by RCMs.However,large biases exist in the interannual variation in certain years or for individual models.展开更多
基金supported by the National Natural Science Foundation of China (General Program,Grant No.40975048)the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA05090207)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-EW-202)
文摘Based on a 10-year simulation of six Regional Climate Models(RCMs) in phase II of the Regional Climate Model Inter-Comparison Project(RMIP) for Asia,the multivariate statistical method of common principal components(CPCs) is used to analyze and compare the spatiotemporal characteristics of temperature and precipitation simulated by multi-RCMs over China,including the mean climate states and their seasonal transition,the spatial distribution of interannual variability,and the interannual variation.CPC is an effective statistical tool for analyzing the results of different models.Compared with traditional statistical methods,CPC analyses provide a more complete statistical picture for observation and simulation results.The results of CPC analyses show that the climatological means and the characteristics of seasonal transition over China can be accurately simulated by RCMs.However,large biases exist in the interannual variation in certain years or for individual models.