A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ...A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime.展开更多
Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, usin...Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, using numerical models. The underwater oil spill model is developed, and a description of the governing equations is proposed, along with modifications required for the particalization of the control volume. Available experimental data were introduced to evaluate the validity of the CFD predictions, the results of which proved to be in good agreement with the experimental data. The effects of oil leak rate, leak diameter, current velocity, and oil density are investigated, by the validated CFD model, to estimate the undersea leakage time, the lateral migration distance, and surface diffusion range when the oil reaches the sea surface. Results indicate that the leakage time and lateral migration distance increase with decreasing leak rates and leak diameter, and increase with increasing current velocity and oil density. On the other hand, a large leak diameter, high density, high leak rate, or fast currents result in a greater surface diffusion range. The findings and analysis presented here will provide practical predictions of oil spills, and guidance for emergency rescues.展开更多
Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred...Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.展开更多
In recent years,the integration of stochastic techniques,especially those based on artificial neural networks,has emerged as a pivotal advancement in the field of computational fluid dynamics.These techniques offer a ...In recent years,the integration of stochastic techniques,especially those based on artificial neural networks,has emerged as a pivotal advancement in the field of computational fluid dynamics.These techniques offer a powerful framework for the analysis of complex fluid flow phenomena and address the uncertainties inherent in fluid dynamics systems.Following this trend,the current investigation portrays the design and construction of an important technique named swarming optimized neuroheuristic intelligence with the competency of artificial neural networks to analyze nonlinear viscoelastic magneto-hydrodynamic Prandtl-Eyring fluid flow model,with diffusive magnetic layers effect along an extended sheet.The currently designed computational technique is established using inverse multiquadric radial basis activation function through the hybridization of a well-known global searching technique of particle swarm optimization and sequential quadratic programming,a technique capable of rapid convergence locally.The most appropriate scaling group involved transformations that are implemented on governing equations of the suggested fluidic model to convert it from a system of nonlinear partial differential equations into a dimensionless form of a third-order nonlinear ordinary differential equation.The transformed/reduced fluid flow model is solved for sundry variations of physical quantities using the designed scheme and outcomes are matched consistently with Adam's numerical technique with negligible magnitude of absolute errors and mean square errors.Moreover,it is revealed that the velocity of the fluid depreciates in the presence of a strong magnetic field effect.The efficacy of the designed solver is depicted evidently through rigorous statistical observations via exhaustive numerical experimentation of the fluidic problem.展开更多
Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex ...Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.展开更多
To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injecte...To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injected into a 100 mm diameter hydrocyclone with the steady water field and air core inside.A lab experimental work has validated the chosen models in simulation by comparing the classification efficiency results.The simulated process shows that the 25 μm quartz particles,close to the cut size,need much more time than the finer and coarser particles to reach the steady flow rate on the outlets of hydrocyclone.For the particles in the inner swirl,with the quartz size increasing from 5 to 25 μm,the particles take more time to enter the vortex finder.The 25 μm quartz particles move outward in the radial direction when they go up to the vortex finder,which is contrary to the quartz particles of 5 μm and 15 μm as they are closely surrounding the air core.The studies reveal that the flow behaviors of particles inside the hydrocyclone depend on the particle size.展开更多
A computational particle fluid-dynamics model coupled with an energy-minimization multi-scale(EMMS)drag model was applied to investigate the influence of particle-size distribution on the hydrodynamics of a three-dime...A computational particle fluid-dynamics model coupled with an energy-minimization multi-scale(EMMS)drag model was applied to investigate the influence of particle-size distribution on the hydrodynamics of a three-dimensional full-loop circulating fluidized bed.Different particle systems,including one monodisperse and two polydisperse cases,were investigated.The numerical model was validated by comparing its results with the experimental axial voidage distribution and solid mass flux.The EMMS drag model had a high accuracy in the computational particle fluid-dynamics simulation of the three-dimensional full-loop circulating fluidized bed.The total number of parcels in the system(Np)influenced the axial voidage distribution in the riser,especially at the lower part of the riser.Additional numerical simulation results showed that axial segregation by size was predicted in the two polydisperse cases and the segregation size increased with an increase in the number of size classes.The axial voidage distribution at the lower portion of the riser was significantly influenced by particle-size distribution.However,radial segregation could only be correctly predicted in the upper region of the riser in the polydisperse case of three solid species.展开更多
Due to insufficiency of a platform based on experimental results for numerical simulation validation using computational fluid dynamic method(CFD) for different geometries and conditions,in this paper we propose a mod...Due to insufficiency of a platform based on experimental results for numerical simulation validation using computational fluid dynamic method(CFD) for different geometries and conditions,in this paper we propose a modeling approach based on the artificial neural network(ANN) to describe spatial distribution of the particles concentration in an indoor environment.This study was performed for a stationary flow regime.The database used to build the ANN model was deducted from bibliography literature and composed by 261 points of experimental measurement.Multilayer perceptron-type neural network(MLP-ANN) model was developed to map the relation between the input variables and the outputs.Several training algorithms were tested to give a choice of the Fletcher conjugate gradient algorithm(TrainCgf).The predictive ability of the results determined by simulation of the ANN model was compared with the results simulated by the CFD approach.The developed neural network was beneficial and easy to predict the particle dispersion curves compared to CFD model.The average absolute error given by the ANN model does not reach 5%against 18%by the Lagrangian model and 28% by the Euler drift-flux model of the CFD approach.展开更多
In the present study, computational fluid dynamics (CFD) is used to investigate inspiratory and expiratory airflow characteristics in the human upper respiratory tract for the purpose of identifying the probable loc...In the present study, computational fluid dynamics (CFD) is used to investigate inspiratory and expiratory airflow characteristics in the human upper respiratory tract for the purpose of identifying the probable locations of particle deposition and the wall injury. Computed tomography (CT) scan data was used to reconstruct a three dimensional respiratory tract from trachea to first generation bronchi. To compare, a simplified model of respiratory tract based on Weibel was also used in the study. The steady state results are obtained for an airflow rate of 45 L/min, corresponding to the heavy breathing condition. The velocity distribution, wall shear stress, static pressure and particle deposition are compared for inspiratory flows in simplified and realistic models and expiratory flows in realistic model only. The results show that the location of cartilaginous rings is susceptible to wall injury and local particle deposition.展开更多
Non-metallic particles and metallic impurities present in the feedstock affect the electrical and mechanical properties of high quality silicon which is used in critical applications such as photovoltaic solar cells a...Non-metallic particles and metallic impurities present in the feedstock affect the electrical and mechanical properties of high quality silicon which is used in critical applications such as photovoltaic solar cells and electronic devices. SiC particles strongly deteriorate the mechanical properties of photovoltaic cells and cause shunting problem. Therefore, these particles should be removed from silicon before solar cells are fabricated from this material. Separation of non-metallic particles from liquid metals by imposing an electromagnetic field was identified as an enhanced technology to produce ultra pure metals. Application of this method for removal of SiC particles from metallurgical grade silicon (MG-Si) was presented. Numerical methods based on a combination of classical models for inclusion removal and computational fluid dynamics (CFD) were developed to calculate the particle concentration and separation efficiency from the melt. In order to check efficiency of the method, several experiments were done using an induction furnace. The experimental results show that this method can be effectively applied to purifying silicon melts from the non-metallic inclusions. The results are in a good agreement with the predictions made by the model.展开更多
The introduction of functionalized magnetizable particles for the purification of enzymes or for the multi-use of pre-immobilized biocatalysts offers a great potential for time and cost savings in biotechnological pro...The introduction of functionalized magnetizable particles for the purification of enzymes or for the multi-use of pre-immobilized biocatalysts offers a great potential for time and cost savings in biotechnological process design. The selective separation of the magnetizable particles is performed for example by a high-gradient magnetic separator. In this study FEM and CFD simulations of the magnetic field and the fluid flow field within a filter chamber of a magnetic separator were carried out, to find an optimal separator design. The motion of virtual magnetizable particles was calculated with a one-way coupled Lagrangian approach in order to test many geometric and parametric variations in reduced time. It was found that a flow homogenisator smoothed the fluid flow, so that the linear velocity became nearly equal over the cross section in the direction of flow. Furthermore the retention of magnetizable particles increases with a high total edge length within the filter matrix.展开更多
基金support by the National Basic Research Program (Grant No. 2010CB226906,and 2012CB215000)
文摘A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime.
基金The National Basic Research Program(973 Program)under contract No.2014CB046803the National Natural Science Foundation of China under contract No.51239008the National Science and Technology Major Project under contract No.2016ZX05028005-004
文摘Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, using numerical models. The underwater oil spill model is developed, and a description of the governing equations is proposed, along with modifications required for the particalization of the control volume. Available experimental data were introduced to evaluate the validity of the CFD predictions, the results of which proved to be in good agreement with the experimental data. The effects of oil leak rate, leak diameter, current velocity, and oil density are investigated, by the validated CFD model, to estimate the undersea leakage time, the lateral migration distance, and surface diffusion range when the oil reaches the sea surface. Results indicate that the leakage time and lateral migration distance increase with decreasing leak rates and leak diameter, and increase with increasing current velocity and oil density. On the other hand, a large leak diameter, high density, high leak rate, or fast currents result in a greater surface diffusion range. The findings and analysis presented here will provide practical predictions of oil spills, and guidance for emergency rescues.
基金This project is supported by Provincial Science Technology Committee of Jiangsu China(No.BJ99025).
文摘Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.
文摘In recent years,the integration of stochastic techniques,especially those based on artificial neural networks,has emerged as a pivotal advancement in the field of computational fluid dynamics.These techniques offer a powerful framework for the analysis of complex fluid flow phenomena and address the uncertainties inherent in fluid dynamics systems.Following this trend,the current investigation portrays the design and construction of an important technique named swarming optimized neuroheuristic intelligence with the competency of artificial neural networks to analyze nonlinear viscoelastic magneto-hydrodynamic Prandtl-Eyring fluid flow model,with diffusive magnetic layers effect along an extended sheet.The currently designed computational technique is established using inverse multiquadric radial basis activation function through the hybridization of a well-known global searching technique of particle swarm optimization and sequential quadratic programming,a technique capable of rapid convergence locally.The most appropriate scaling group involved transformations that are implemented on governing equations of the suggested fluidic model to convert it from a system of nonlinear partial differential equations into a dimensionless form of a third-order nonlinear ordinary differential equation.The transformed/reduced fluid flow model is solved for sundry variations of physical quantities using the designed scheme and outcomes are matched consistently with Adam's numerical technique with negligible magnitude of absolute errors and mean square errors.Moreover,it is revealed that the velocity of the fluid depreciates in the presence of a strong magnetic field effect.The efficacy of the designed solver is depicted evidently through rigorous statistical observations via exhaustive numerical experimentation of the fluidic problem.
基金supported by National Natural Science Foundation of China(52336005 and 52106133).
文摘Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.
基金Projects(2006BAB11B07,2007BAB15B01)supported by the National Science&Technology Pillar Program during the Eleventh Five-year Plan Period,ChinaProject(2011BAB05B01)supported by the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period,China
文摘To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injected into a 100 mm diameter hydrocyclone with the steady water field and air core inside.A lab experimental work has validated the chosen models in simulation by comparing the classification efficiency results.The simulated process shows that the 25 μm quartz particles,close to the cut size,need much more time than the finer and coarser particles to reach the steady flow rate on the outlets of hydrocyclone.For the particles in the inner swirl,with the quartz size increasing from 5 to 25 μm,the particles take more time to enter the vortex finder.The 25 μm quartz particles move outward in the radial direction when they go up to the vortex finder,which is contrary to the quartz particles of 5 μm and 15 μm as they are closely surrounding the air core.The studies reveal that the flow behaviors of particles inside the hydrocyclone depend on the particle size.
基金This work was financially supported by the National Natural Science Foundation of China through contract No.91634109 and No.51676158the National Key Research and Development Program of China(2016YFB0600102).
文摘A computational particle fluid-dynamics model coupled with an energy-minimization multi-scale(EMMS)drag model was applied to investigate the influence of particle-size distribution on the hydrodynamics of a three-dimensional full-loop circulating fluidized bed.Different particle systems,including one monodisperse and two polydisperse cases,were investigated.The numerical model was validated by comparing its results with the experimental axial voidage distribution and solid mass flux.The EMMS drag model had a high accuracy in the computational particle fluid-dynamics simulation of the three-dimensional full-loop circulating fluidized bed.The total number of parcels in the system(Np)influenced the axial voidage distribution in the riser,especially at the lower part of the riser.Additional numerical simulation results showed that axial segregation by size was predicted in the two polydisperse cases and the segregation size increased with an increase in the number of size classes.The axial voidage distribution at the lower portion of the riser was significantly influenced by particle-size distribution.However,radial segregation could only be correctly predicted in the upper region of the riser in the polydisperse case of three solid species.
基金supported by the Algerian Atomic Energy Commission
文摘Due to insufficiency of a platform based on experimental results for numerical simulation validation using computational fluid dynamic method(CFD) for different geometries and conditions,in this paper we propose a modeling approach based on the artificial neural network(ANN) to describe spatial distribution of the particles concentration in an indoor environment.This study was performed for a stationary flow regime.The database used to build the ANN model was deducted from bibliography literature and composed by 261 points of experimental measurement.Multilayer perceptron-type neural network(MLP-ANN) model was developed to map the relation between the input variables and the outputs.Several training algorithms were tested to give a choice of the Fletcher conjugate gradient algorithm(TrainCgf).The predictive ability of the results determined by simulation of the ANN model was compared with the results simulated by the CFD approach.The developed neural network was beneficial and easy to predict the particle dispersion curves compared to CFD model.The average absolute error given by the ANN model does not reach 5%against 18%by the Lagrangian model and 28% by the Euler drift-flux model of the CFD approach.
基金funded by Department of Science & Technology Government of India through the DST-FIST grant
文摘In the present study, computational fluid dynamics (CFD) is used to investigate inspiratory and expiratory airflow characteristics in the human upper respiratory tract for the purpose of identifying the probable locations of particle deposition and the wall injury. Computed tomography (CT) scan data was used to reconstruct a three dimensional respiratory tract from trachea to first generation bronchi. To compare, a simplified model of respiratory tract based on Weibel was also used in the study. The steady state results are obtained for an airflow rate of 45 L/min, corresponding to the heavy breathing condition. The velocity distribution, wall shear stress, static pressure and particle deposition are compared for inspiratory flows in simplified and realistic models and expiratory flows in realistic model only. The results show that the location of cartilaginous rings is susceptible to wall injury and local particle deposition.
文摘Non-metallic particles and metallic impurities present in the feedstock affect the electrical and mechanical properties of high quality silicon which is used in critical applications such as photovoltaic solar cells and electronic devices. SiC particles strongly deteriorate the mechanical properties of photovoltaic cells and cause shunting problem. Therefore, these particles should be removed from silicon before solar cells are fabricated from this material. Separation of non-metallic particles from liquid metals by imposing an electromagnetic field was identified as an enhanced technology to produce ultra pure metals. Application of this method for removal of SiC particles from metallurgical grade silicon (MG-Si) was presented. Numerical methods based on a combination of classical models for inclusion removal and computational fluid dynamics (CFD) were developed to calculate the particle concentration and separation efficiency from the melt. In order to check efficiency of the method, several experiments were done using an induction furnace. The experimental results show that this method can be effectively applied to purifying silicon melts from the non-metallic inclusions. The results are in a good agreement with the predictions made by the model.
文摘The introduction of functionalized magnetizable particles for the purification of enzymes or for the multi-use of pre-immobilized biocatalysts offers a great potential for time and cost savings in biotechnological process design. The selective separation of the magnetizable particles is performed for example by a high-gradient magnetic separator. In this study FEM and CFD simulations of the magnetic field and the fluid flow field within a filter chamber of a magnetic separator were carried out, to find an optimal separator design. The motion of virtual magnetizable particles was calculated with a one-way coupled Lagrangian approach in order to test many geometric and parametric variations in reduced time. It was found that a flow homogenisator smoothed the fluid flow, so that the linear velocity became nearly equal over the cross section in the direction of flow. Furthermore the retention of magnetizable particles increases with a high total edge length within the filter matrix.