On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architeeture for improving star image processing are presented in this paper. In the design, the operation mo...On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architeeture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows, ineluding the star, to the on-ehip memory of DSP is arranged in the invalid period of CCD frame signal. While the CCD saves the star image to memory, DSP processes the data in the onehip memory. This parallelism greatly improves the effieieney of processing. DSP HOLD mode and CPLD teehnology are used to make a shared memory between CCD and DSP. The five lightest stars in the star aequisition stage are aequired in only 3.5 ms. In 43μs, the data in five expanded windows ineluding stars are moved into the internal memory of DSP, and in 1.6 ms, five star eoordinates are aehieved in the star tracking stage.展开更多
文摘On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architeeture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows, ineluding the star, to the on-ehip memory of DSP is arranged in the invalid period of CCD frame signal. While the CCD saves the star image to memory, DSP processes the data in the onehip memory. This parallelism greatly improves the effieieney of processing. DSP HOLD mode and CPLD teehnology are used to make a shared memory between CCD and DSP. The five lightest stars in the star aequisition stage are aequired in only 3.5 ms. In 43μs, the data in five expanded windows ineluding stars are moved into the internal memory of DSP, and in 1.6 ms, five star eoordinates are aehieved in the star tracking stage.