Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displ...Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.展开更多
Objective To evaluate the biomechanics of hollow-compression-screw in the osteoporotic femoral neck with composite c alcium phosphate cement (CCPC).Methods Sixteen femurs of superior segment were randomly divided into...Objective To evaluate the biomechanics of hollow-compression-screw in the osteoporotic femoral neck with composite c alcium phosphate cement (CCPC).Methods Sixteen femurs of superior segment were randomly divided into two groups:augmentation group and non-augmentation group.CCPC was used in augmentation group.Result Augmentation with CCPC would improve the initial mobile force of hollow-compression-screw,the ini tial mobile force and the maximal axial pull-out strength for augmentation group,non-augmentation group in-creased from(192.7±14.0)N and(202.8±14.0)N to(328.5±34.7)N and(347.8±31.2)N.There was significant difference of two groups(P <0.01).Conclusion CCPC can enhance hollow-compressio n-screw fixation in osteoporotic fe moral neck.展开更多
文摘Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.
文摘Objective To evaluate the biomechanics of hollow-compression-screw in the osteoporotic femoral neck with composite c alcium phosphate cement (CCPC).Methods Sixteen femurs of superior segment were randomly divided into two groups:augmentation group and non-augmentation group.CCPC was used in augmentation group.Result Augmentation with CCPC would improve the initial mobile force of hollow-compression-screw,the ini tial mobile force and the maximal axial pull-out strength for augmentation group,non-augmentation group in-creased from(192.7±14.0)N and(202.8±14.0)N to(328.5±34.7)N and(347.8±31.2)N.There was significant difference of two groups(P <0.01).Conclusion CCPC can enhance hollow-compressio n-screw fixation in osteoporotic fe moral neck.