期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Screening of Potent Inhibitor of H1N1 Influenza NS1 CPSF30 Binding Pocket by Molecular Docking
1
作者 Li Zhang Jian Zhao +2 位作者 Guowei Ding Xuejiao Li Hongsheng Liu 《Advances in Infectious Diseases》 2012年第4期92-96,共5页
The swine flu, H1N1 virus was outbroken in Mexico and the United States in April 2009 and then rapidly spread worldwide. The World Health Organization declared that the outbreak of influenza is caused by a new subtype... The swine flu, H1N1 virus was outbroken in Mexico and the United States in April 2009 and then rapidly spread worldwide. The World Health Organization declared that the outbreak of influenza is caused by a new subtype of influenza H1N1 influenza virus. And researchers have isolated some oseltamivir resistance strains in 2009 swine flu which makes the imminency of research and development of new anti influenza drug. The CPSF30 binding pocket of effector domain in NS1 protein is very important in the replication of influanza A virus and is a new attractive anti flu drug target. But up to now there is no antiviral drug target this pocket. Here we employ molecular docking to screening of about 200,000 compounds. We find four novel compounds with high binding energy. Binding comformation analysis revealed that these small molecules can interact with the binding pocket by some strong hydrophobic interaction. This study find some novel small molecules can be used as lead compounds in the development of new antiinfluenza drug based on CPSF30 pocket. 展开更多
关键词 cpsf30 BINDING POCKET Molecular DOCKING INFLUENZA A H1N1
下载PDF
甲型H1N1流感病毒非结构蛋白NS1与人CPSF30结合拮抗剂筛选模型的建立及药物筛选 被引量:5
2
作者 孔建强 沈君豪 +5 位作者 黄勇 阮仁余 项斌 郑晓东 程克棣 王伟 《药学学报》 CAS CSCD 北大核心 2010年第3期388-394,共7页
利用酵母双杂交技术研究甲型H1N1流感病毒非结构蛋白NS1和人切割与多聚腺苷酸化特异因子30kDa亚基(CPSF30)的相互作用,构建了一个酵母模型用于筛选NS1和CPSF30相互作用的拮抗剂,从而为筛选抗甲型H1N1流感病毒药物奠定基础。采用连续重叠... 利用酵母双杂交技术研究甲型H1N1流感病毒非结构蛋白NS1和人切割与多聚腺苷酸化特异因子30kDa亚基(CPSF30)的相互作用,构建了一个酵母模型用于筛选NS1和CPSF30相互作用的拮抗剂,从而为筛选抗甲型H1N1流感病毒药物奠定基础。采用连续重叠PCR技术克隆得到H1N1流感病毒NS1基因。提取人HeLa细胞RNA,通过RT-PCR克隆得到人CPSF30基因。将NS1基因克隆到表达载体pGBKT7中获得诱饵载体pGBKNS1,将CPSF30基因克隆到载体pGADT7中获得捕获载体pGADCPSF;将pGBKNS1和pGADCPSF共转入酿酒酵母AH109,获得重组酿酒酵母AH109[pGADCPSF+pGBKNS1]。利用该模型筛选了30余种中成药,发现双黄连口服液等4种中成药能抑制NS1和CPSF30之间的相互作用。 展开更多
关键词 H1N1流感病毒 非结构蛋白NS1 cpsf30 酵母模型 中药筛选
原文传递
CPSF30-L-mediated recognition of mRNA m^(6)A modification controls alternative polyadenylation of nitrate signaling-related gene transcripts in Arabidopsis 被引量:14
3
作者 Yiteng Hou Jing Sun +7 位作者 Baixing Wu Yangyang Gao Hongbo Nie Zhentian Nie Shuxuan Quan Yong Wang Xiaofeng Cao Sisi Li 《Molecular Plant》 SCIE CAS CSCD 2021年第4期688-699,共12页
N6-methyladenosine(m^(6)A),a ubiquitous internal modification of eukaryotic mRNAs,plays a vital role in almost every aspect of mRNA metabolism.However,there is little evidence documenting the role of m^(6)A in regulat... N6-methyladenosine(m^(6)A),a ubiquitous internal modification of eukaryotic mRNAs,plays a vital role in almost every aspect of mRNA metabolism.However,there is little evidence documenting the role of m^(6)A in regulating alternative polyadenylation(APA)in plants.APA is controlled by a large protein-RNA complex with many components,including CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30(CPSF30).In Arabidopsis,CPSF30 has two isoforms and the longer isoform(CPSF30-L)contains a YT512-B Homology(YTH)domain,which is unique to plants.In this study,we showed that CPSF30-L YTH domain binds to m^(6)A in v itro.In the cpsf30-2 mutant,the transcripts of many genes including several important nitrate signaling-related genes had shifts in polyadenylation sites that were correlated with m^(6)A peaks,indicating that these gene transcripts carrying m^(6)A tend to be regulated by APA.Wild-type CPSF30-L could rescue the defects in APA and nitrate metabolism in cpsf30-2,but m^(6)A-binding-defective mutants of CPSF30-L could not.Taken together,our results demonstrated that m^(6)A modification regulates APA in Arabidops is and revealed that the m^(6)A reader CPSF30-L affects nitrate signaling by controlling APA,shedding new light on the roles of the m^(6)A modification during RNA 3-end processing in nitrate metabolism. 展开更多
关键词 m^(6)A modification alternative polyadenylation nitrate metabolism cpsf30
原文传递
Arab/c/opste N^(6)-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies 被引量:14
4
作者 Peizhe Song Junbo Yang +4 位作者 Chunling Wang Qiang Lu Linqing Shi Subiding Tayier Guifang Jia 《Molecular Plant》 SCIE CAS CSCD 2021年第4期571-587,共17页
The biological functions of the epitranscriptomic modification N^(6)-methyladenosine(m^(6)A)in plants are not fully understood.CPSF30-L is a predominant isoform of the polyadenylation factor CPSF30 and consists of CPS... The biological functions of the epitranscriptomic modification N^(6)-methyladenosine(m^(6)A)in plants are not fully understood.CPSF30-L is a predominant isoform of the polyadenylation factor CPSF30 and consists of CPSF30-S and an m^(6)A-binding YTH domain.Little is known about the biological roles of CPSF30-L and the molecular mechanism underlying its m^(6)A-binding function in alternative polyadenylation.Here,we charac-terized CPSF30-L as an Arabidopsis m^(6)A reader whose m^(6)A-binding function is required for the floral tran-sition and abscisic acid(ABA)response.We found that the m^(6)A-binding activity of CPSF30-L enhances the formation of liquid-like nuclear bodies,where CPSF30-L mainly recognizes m*A-modified far-upstream elements to control polyadenylation site choice.Deficiency of CPSF30-L lengthens the 3'untranslated region of three phenotypes-related transcripts,thereby accelerating their mRNA degradation and leading to late flowering and ABA hypersensitivity.Collectively,this study uncovers a new molecular mechanism for m^(6)A-driven phase separation and polyadenylation in plants. 展开更多
关键词 epitranscriptomics N^(6)-methyladenosine(m^(6)A) m^(6)A reader cpsf30-L phase separation alternative polyadenylation(APA)
原文传递
AAUAA的分子生物学识别机制探究
5
作者 陈旭文 《安徽冶金科技职业学院学报》 2024年第1期19-20,25,共3页
mRNA3’端加poly A是很重要的生物学过程,加ployA需要识别三个信号,分别是UGUA、AAUAAA、UGUGU。以往的结构生物学已经发现了识别UGUA和UGUGU的分子生物学机制,而对于最为保守的AAUAAA的识别机制至今仍旧没有给出很清楚的解释,到目前为... mRNA3’端加poly A是很重要的生物学过程,加ployA需要识别三个信号,分别是UGUA、AAUAAA、UGUGU。以往的结构生物学已经发现了识别UGUA和UGUGU的分子生物学机制,而对于最为保守的AAUAAA的识别机制至今仍旧没有给出很清楚的解释,到目前为止,仅知道WDR33和CPSF30参与该识别过程。在本文中对参与识别的两个蛋白分别进行研究,期望找到识别最保守信号AAUAAA的结构生物学机制。通过克隆并且体外表达了这两个蛋白,借助荧光偏振实验研究了CPSF30和AAUAAA的相互作用,发现CPSF30对AAUAAA的识别是非特异性的,WDR33在大肠杆菌系统无法正确折叠。目前已经利用昆虫表达系统成功表达了蛋白,为后续的功能实验打下了坚实的基础。 展开更多
关键词 WDR33 CPSF 30 AAUAAA
下载PDF
一株H5N1 NS1蛋白第101位点的甲硫氨酸决定该蛋白抗干扰素能力及亚细胞定位
6
作者 孟晋 张振锋 +2 位作者 郑振华 刘艳 王汉中 《中国科学:生命科学》 CSCD 北大核心 2012年第10期787-794,共8页
A型流感病毒NS1蛋白有两种抗干扰素(IFN)机制,一种通过抑制RIG-Ⅰ信号转导完成,另一种通过与CPSF30结合,阻断细胞前体mRNA剪切和加工.目前,NS1拮抗Ⅰ型IFN生成的具体机制还不是十分清楚.本文结果显示,PR/8/34NS1蛋白部分定位于细胞质... A型流感病毒NS1蛋白有两种抗干扰素(IFN)机制,一种通过抑制RIG-Ⅰ信号转导完成,另一种通过与CPSF30结合,阻断细胞前体mRNA剪切和加工.目前,NS1拮抗Ⅰ型IFN生成的具体机制还不是十分清楚.本文结果显示,PR/8/34NS1蛋白部分定位于细胞质,并且表现出很强的、特异性抑制IFN-β启动子活性的能力,而H5N1NS1则明显不同.H5N1NS1主要定位细胞核,它抑制IFN的能力相对较弱,是通过抑制细胞基因整体表达水平实现的.本研究通过构建H5N1NS1的一系列突变后发现,仅将H5N1NS1的101位点的甲硫氨酸突变为PR/8/34NS1相应位点的异亮氨酸(命名为H5-M101I)即可获得了特异性抑制IFN-β启动子活性的能力,并且使该蛋白向细胞质定位,同时失去与CPSF30结合的能力.本研究还发现,之前报道的定位于138~147氨基酸位点的核输出信号(NES)并没有发挥功能.这表明,很可能存在尚未发现的其他氨基酸具有NES功能.结果表明,101位点的甲硫氨酸(Met-101)可能与其临近的第100位亮氨酸(Leu-100)共同增强了此区域的NES;除此之外,Met-101也是NS1与CPSF30结合的关键氨基酸.综上所述,本文揭示了Met-101在H5N1流感病毒生活周期中的重要性,同时为抗病毒工作提供了有价值的信息. 展开更多
关键词 A型流感病毒 H5N1 NS1 干扰素Β cpsf30 核输出信号
原文传递
Methionine-101 from one strain of H5N1 NS1 protein determines its IFN-antagonizing ability and subcellular distribution pattern
7
作者 MENG Jin ZHANG ZhenFeng +2 位作者 ZHENG ZhenHua LIU Yan WANG HanZhong 《Science China(Life Sciences)》 SCIE CAS 2012年第11期933-939,共7页
Influenza A virus NS1 protein has developed two main IFN-antagonizing mechanisms by inhibiting retinoic-acid-inducible gene I (RIG-I) signal transduction, or by suppressing cellular pre-mRNA processing through binding... Influenza A virus NS1 protein has developed two main IFN-antagonizing mechanisms by inhibiting retinoic-acid-inducible gene I (RIG-I) signal transduction, or by suppressing cellular pre-mRNA processing through binding to cleavage and polyad-enylation specific factor 30 (CPSF30). However, the precise effects of NS1 on suppressing type I IFN induction have not been well characterized. Here we report that compared with PR/8/34 NS1, which is localized partially in the cytoplasm and has strong IFN-antagonizing ability via specifically inhibiting IFN-β promoter activity, H5N1 NS1 has strikingly different characteristics. It mainly accumulates in the nucleus of transfected cells and exerts rather weak IFN-counteracting ability through suppression of the overall gene expression. The M101I mutation of H5N1 NS1, namely H5-M101I, fully reversed its functions. H5-M101I gained the ability to specifically inhibit IFN-β promoter activity, translocate to the cytoplasm, and release CPSF30. The previously reported NES (nuclear export signal) (residues 138 147) was unable to lead H5N1 NS1 to translocate. This suggests that other residues may serve as a potent NES. Findings indicated that together with leucine-100, methionine-101 en- hanced the regional NES. In addition, methionine-101 was the key residue for the NS1-CPSF30 interaction. This study reveals the importance of methionine-101 in the influenza A virus life cycle and may provide valuable information for antiviral strategies. 展开更多
关键词 NS1蛋白 H5N1 对抗能力 蛋氨酸 亚细胞 分布模式 A型流感病毒 启动子活性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部