This study researched the relationship between the applied potential and the critical pitting temperature (CPT) of the 304 and new 200 series of stainless steels. The fluctuation about the potential dependent CPT fo...This study researched the relationship between the applied potential and the critical pitting temperature (CPT) of the 304 and new 200 series of stainless steels. The fluctuation about the potential dependent CPT for the stainless steels was investigated and the CPT range was obtained. The difference between the potential dependent CPTs of the 304 and 200 series of stainless steels with an applied potential of 100 mV ( vs SCE), were presented, and by this means the pitting corrosion resistances of them were compared.展开更多
Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemic...Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen.展开更多
文摘This study researched the relationship between the applied potential and the critical pitting temperature (CPT) of the 304 and new 200 series of stainless steels. The fluctuation about the potential dependent CPT for the stainless steels was investigated and the CPT range was obtained. The difference between the potential dependent CPTs of the 304 and 200 series of stainless steels with an applied potential of 100 mV ( vs SCE), were presented, and by this means the pitting corrosion resistances of them were compared.
基金supported by the National Natural Science Foundation of China and Baosteel Group Corporation (No.50534010)
文摘Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen.