One of the most devastating effects of earthquakes in the seismic regions is liquefaction. Many research works have been done in this field and at present different methods are available for the liquefaction potential...One of the most devastating effects of earthquakes in the seismic regions is liquefaction. Many research works have been done in this field and at present different methods are available for the liquefaction potential assessment. The liquefaction is a very significant phenomenon in clayey silty soils, silty sands and also sands. The high potential of liquefaction is generally recognized when these type of soils are laid under the hydrostatic water table. This paper make an overview of two different methods for the evaluation of liquefaction potential, and a case study is presented. Two methods presented here are the Deterministic Approach proposed by Robertson and Wride (1998), and the Probabilistic Approach proposed by Moss and co-workers. Case study of the liquefaction potential evaluation is done for the Golem area, where geotechnical data from CPTU test were collected. The results of analysis in the Golem area show that liquefaction has medium susceptibly to occur. From the analyses, it is shown that the Probabilistic Approach gives more accurate information about the risk of liquefaction than the Deterministic Approach.展开更多
In this work the possibility of identifying two important aspects in the process of adopting soil parameters for calculating stability analysis models in tailing dams is discussed. The use of commercial computer progr...In this work the possibility of identifying two important aspects in the process of adopting soil parameters for calculating stability analysis models in tailing dams is discussed. The use of commercial computer programs for stability calculations allows obtaining numerically exact results. Its representativeness, however, will be linked to the correct definition of the phreatic regime and to the prediction of volumetric soil behavior during shearing (contractile vs. dilating materials). The theoretical principles for the selection of soils parameters for different failure models are briefly presented. Also, how the incorrect assumptions regarding material behavior can significantly affect the estimation of tailing dams’ stability. The results of CPTu tests for the diagnosis of the phreatic and mechanical condition of the materials are discussed and two examples are presented to remark on the care that should be taken to avoid incorrect soils parameters adoption.展开更多
文摘One of the most devastating effects of earthquakes in the seismic regions is liquefaction. Many research works have been done in this field and at present different methods are available for the liquefaction potential assessment. The liquefaction is a very significant phenomenon in clayey silty soils, silty sands and also sands. The high potential of liquefaction is generally recognized when these type of soils are laid under the hydrostatic water table. This paper make an overview of two different methods for the evaluation of liquefaction potential, and a case study is presented. Two methods presented here are the Deterministic Approach proposed by Robertson and Wride (1998), and the Probabilistic Approach proposed by Moss and co-workers. Case study of the liquefaction potential evaluation is done for the Golem area, where geotechnical data from CPTU test were collected. The results of analysis in the Golem area show that liquefaction has medium susceptibly to occur. From the analyses, it is shown that the Probabilistic Approach gives more accurate information about the risk of liquefaction than the Deterministic Approach.
文摘In this work the possibility of identifying two important aspects in the process of adopting soil parameters for calculating stability analysis models in tailing dams is discussed. The use of commercial computer programs for stability calculations allows obtaining numerically exact results. Its representativeness, however, will be linked to the correct definition of the phreatic regime and to the prediction of volumetric soil behavior during shearing (contractile vs. dilating materials). The theoretical principles for the selection of soils parameters for different failure models are briefly presented. Also, how the incorrect assumptions regarding material behavior can significantly affect the estimation of tailing dams’ stability. The results of CPTu tests for the diagnosis of the phreatic and mechanical condition of the materials are discussed and two examples are presented to remark on the care that should be taken to avoid incorrect soils parameters adoption.