This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstr...This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstrategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equationsolving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency ofCPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload betweenCPU and GPU. To illustrate the advantages of the proposedmethod, three benchmark examples are tested to verifythe hybrid parallel strategy in this paper. The results show that the efficiency of the hybrid method is faster thanserial CPU and parallel GPU, while the speedups can be up to two orders of magnitude.展开更多
Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic pro...Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic processing unit).Aiming at this problem,a fast weighting method for PIC simulation on GPU-accelerated systems was proposed to avoid the atomic memory operations during the weighting process.The method was implemented by taking advantage of GPU's thread synchronization mechanism and dividing the problem space properly.Moreover,software managed shared memory on the GPU was employed to buffer the intermediate data.The experimental results show that the method achieves speedups up to 3.5 times compared to previous works,and runs 20.08 times faster on one NVIDIA Tesla M2090 GPU compared to a single core of Intel Xeon X5670 CPU.展开更多
Graphics Processing Units(GPUs)are used to accelerate computing-intensive tasks,such as neural networks,data analysis,high-performance computing,etc.In the past decade or so,researchers have done a lot of work on GPU ...Graphics Processing Units(GPUs)are used to accelerate computing-intensive tasks,such as neural networks,data analysis,high-performance computing,etc.In the past decade or so,researchers have done a lot of work on GPU architecture and proposed a variety of theories and methods to study the microarchitectural characteristics of various GPUs.In this study,the GPU serves as a co-processor and works together with the CPU in an embedded real-time system to handle computationally intensive tasks.It models the architecture of the GPU and further considers it based on some excellent work.The SIMT mechanism and Cache-miss situation provide a more detailed analysis of the GPU architecture.In order to verify the GPU architecture model proposed in this article,10 GPU kernel_task and an Nvidia GPU device were used to perform experiments.The experimental results showed that the minimum error between the kernel task execution time predicted by the GPU architecture model proposed in this article and the actual measured kernel task execution time was 3.80%,and the maximum error was 8.30%.展开更多
基金the National Key R&D Program of China(2020YFB1708300)the National Natural Science Foundation of China(52005192)the Project of Ministry of Industry and Information Technology(TC210804R-3).
文摘This paper aims to solve large-scale and complex isogeometric topology optimization problems that consumesignificant computational resources. A novel isogeometric topology optimization method with a hybrid parallelstrategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equationsolving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency ofCPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload betweenCPU and GPU. To illustrate the advantages of the proposedmethod, three benchmark examples are tested to verifythe hybrid parallel strategy in this paper. The results show that the efficiency of the hybrid method is faster thanserial CPU and parallel GPU, while the speedups can be up to two orders of magnitude.
基金Projects(61170049,60903044)supported by National Natural Science Foundation of ChinaProject(2012AA010903)supported by National High Technology Research and Development Program of China
文摘Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic processing unit).Aiming at this problem,a fast weighting method for PIC simulation on GPU-accelerated systems was proposed to avoid the atomic memory operations during the weighting process.The method was implemented by taking advantage of GPU's thread synchronization mechanism and dividing the problem space properly.Moreover,software managed shared memory on the GPU was employed to buffer the intermediate data.The experimental results show that the method achieves speedups up to 3.5 times compared to previous works,and runs 20.08 times faster on one NVIDIA Tesla M2090 GPU compared to a single core of Intel Xeon X5670 CPU.
文摘Graphics Processing Units(GPUs)are used to accelerate computing-intensive tasks,such as neural networks,data analysis,high-performance computing,etc.In the past decade or so,researchers have done a lot of work on GPU architecture and proposed a variety of theories and methods to study the microarchitectural characteristics of various GPUs.In this study,the GPU serves as a co-processor and works together with the CPU in an embedded real-time system to handle computationally intensive tasks.It models the architecture of the GPU and further considers it based on some excellent work.The SIMT mechanism and Cache-miss situation provide a more detailed analysis of the GPU architecture.In order to verify the GPU architecture model proposed in this article,10 GPU kernel_task and an Nvidia GPU device were used to perform experiments.The experimental results showed that the minimum error between the kernel task execution time predicted by the GPU architecture model proposed in this article and the actual measured kernel task execution time was 3.80%,and the maximum error was 8.30%.