采用HNO3-H2O2消解-电化学方法测定小米中的铬含量。在DTPA-HAc-Na Ac体系中铬(Ⅵ)离子在镀汞电极上形成汞齐从而得到氧化峰电流,考察能够满足电化学测定的前处理消解技术。结果表明,铬(Ⅵ)离子的消解液在温度130℃,硝酸10 m L,过...采用HNO3-H2O2消解-电化学方法测定小米中的铬含量。在DTPA-HAc-Na Ac体系中铬(Ⅵ)离子在镀汞电极上形成汞齐从而得到氧化峰电流,考察能够满足电化学测定的前处理消解技术。结果表明,铬(Ⅵ)离子的消解液在温度130℃,硝酸10 m L,过氧化氢38 m L,p H值呈中性时能够得到很好的电化学测定结果,线性相关系数为0.99,回收率为90%~110%。方法可以用于米中痕量铬(Ⅵ)的测定。展开更多
为了进一步提高超细粉末WC喷涂层的性能,以5~15μm的超细WC-10Co-4Cr粉末为材料,分别采用低温超音速火焰喷涂(LT-HVOF)和超音速火焰喷涂(HVOF)技术在316L不锈钢表面制备WC涂层。通过聚焦离子束(Focused ion beam,FIB)对WC-10Co-4Cr粒子...为了进一步提高超细粉末WC喷涂层的性能,以5~15μm的超细WC-10Co-4Cr粉末为材料,分别采用低温超音速火焰喷涂(LT-HVOF)和超音速火焰喷涂(HVOF)技术在316L不锈钢表面制备WC涂层。通过聚焦离子束(Focused ion beam,FIB)对WC-10Co-4Cr粒子剖面形貌进行了原位切割并分析,利用SEM形貌、EDS谱和摩擦磨损试验对涂层的显微结构和干摩擦磨损性能进行了表征。结果表明:HVOF的高焰流温度使超细WC-10Co-4Cr粉末的粘结相充分熔融,WC硬质相溶于粘结相或发生脱碳,形成Cox(WC)y脆性相和W2C相,另外因Cr较低的表面张力使涂层内界面存在富Cr带,而LT-HVOF涂层没有富Cr带;LT-HVOF涂层的摩擦系数和磨损率分别为0.632 2,1.560×10-5mm3/(N·m),均低于HVOF涂层;2种WC涂层的磨损形式均以磨粒磨损为主,HVOF涂层中的富Cr带在载荷作用下形成裂纹并易于沿其扩展,造成涂层较大块剥落,降低了WC涂层的耐磨性能。展开更多
文章采用恒界面法对乳化液膜分离Cr(Ⅲ)的液膜内相反萃步骤进行了研究,考察了搅拌速度、温度、界面面积、水相p H值、DEHPA[二(2-乙基己基)磷酸]浓度和络合物浓度对反萃速率的影响,得到反萃反应的动力学与热力学数据,并推导出反萃的反...文章采用恒界面法对乳化液膜分离Cr(Ⅲ)的液膜内相反萃步骤进行了研究,考察了搅拌速度、温度、界面面积、水相p H值、DEHPA[二(2-乙基己基)磷酸]浓度和络合物浓度对反萃速率的影响,得到反萃反应的动力学与热力学数据,并推导出反萃的反应机理。实验结果表明:搅拌速度大于0.45 m/s时出现与搅拌强度无关的化学反应控制"坪区",且反萃速率与界面面积成正比,此时反应属于扩散和化学反应共同控制,并且反应主要发生在相界面上;由温度与反萃速率的关系得知,该反萃反应是一个放热反应,反应的活化能Ea=24.25 k J/mol,焓变ΔH=-55.85 k J/mol,熵变ΔS=-566.37 J/mol,在T=308 K时ΔG=118.59 k J/mol;在控制步骤反应式中,DEHPA反应级数为0,络合物浓度和水相氢离子的反应级数为1,并推导出反萃反应的控制步骤的方程式为r=k0[Cr(OH)2HL2(o)][H+(w)]。展开更多
文摘采用HNO3-H2O2消解-电化学方法测定小米中的铬含量。在DTPA-HAc-Na Ac体系中铬(Ⅵ)离子在镀汞电极上形成汞齐从而得到氧化峰电流,考察能够满足电化学测定的前处理消解技术。结果表明,铬(Ⅵ)离子的消解液在温度130℃,硝酸10 m L,过氧化氢38 m L,p H值呈中性时能够得到很好的电化学测定结果,线性相关系数为0.99,回收率为90%~110%。方法可以用于米中痕量铬(Ⅵ)的测定。
文摘为了进一步提高超细粉末WC喷涂层的性能,以5~15μm的超细WC-10Co-4Cr粉末为材料,分别采用低温超音速火焰喷涂(LT-HVOF)和超音速火焰喷涂(HVOF)技术在316L不锈钢表面制备WC涂层。通过聚焦离子束(Focused ion beam,FIB)对WC-10Co-4Cr粒子剖面形貌进行了原位切割并分析,利用SEM形貌、EDS谱和摩擦磨损试验对涂层的显微结构和干摩擦磨损性能进行了表征。结果表明:HVOF的高焰流温度使超细WC-10Co-4Cr粉末的粘结相充分熔融,WC硬质相溶于粘结相或发生脱碳,形成Cox(WC)y脆性相和W2C相,另外因Cr较低的表面张力使涂层内界面存在富Cr带,而LT-HVOF涂层没有富Cr带;LT-HVOF涂层的摩擦系数和磨损率分别为0.632 2,1.560×10-5mm3/(N·m),均低于HVOF涂层;2种WC涂层的磨损形式均以磨粒磨损为主,HVOF涂层中的富Cr带在载荷作用下形成裂纹并易于沿其扩展,造成涂层较大块剥落,降低了WC涂层的耐磨性能。
文摘文章采用恒界面法对乳化液膜分离Cr(Ⅲ)的液膜内相反萃步骤进行了研究,考察了搅拌速度、温度、界面面积、水相p H值、DEHPA[二(2-乙基己基)磷酸]浓度和络合物浓度对反萃速率的影响,得到反萃反应的动力学与热力学数据,并推导出反萃的反应机理。实验结果表明:搅拌速度大于0.45 m/s时出现与搅拌强度无关的化学反应控制"坪区",且反萃速率与界面面积成正比,此时反应属于扩散和化学反应共同控制,并且反应主要发生在相界面上;由温度与反萃速率的关系得知,该反萃反应是一个放热反应,反应的活化能Ea=24.25 k J/mol,焓变ΔH=-55.85 k J/mol,熵变ΔS=-566.37 J/mol,在T=308 K时ΔG=118.59 k J/mol;在控制步骤反应式中,DEHPA反应级数为0,络合物浓度和水相氢离子的反应级数为1,并推导出反萃反应的控制步骤的方程式为r=k0[Cr(OH)2HL2(o)][H+(w)]。