期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的头盔佩戴自动检测 被引量:2
1
作者 张传金 李燕林 +1 位作者 张永义 王扩 《电脑编程技巧与维护》 2019年第8期126-130,共5页
为加强巡检人员安全,基于深度学习算法,设计了一种头盔佩戴自动检测方法。在SSD300模型的基础上,使用数据增强技术,通过卷积层conv4_3进行检测,以增强对较小目标的识别精度;采用{1/2,2}和{1/3,3}的边框,通过适当调节边框提高检测效果;以... 为加强巡检人员安全,基于深度学习算法,设计了一种头盔佩戴自动检测方法。在SSD300模型的基础上,使用数据增强技术,通过卷积层conv4_3进行检测,以增强对较小目标的识别精度;采用{1/2,2}和{1/3,3}的边框,通过适当调节边框提高检测效果;以VGG16作为基础网络,使用atrous卷积,进一步改善识别精度。将训练模型移植到CR1030P-YT便携式安卓智能通信系统,并与在服务器GPU、CPU上的检测结果和检测速率进行对比。实验结果表明,CR1030P-YT平台上的头盔佩戴检测结果与服务器一致,检测精度高达95%以上,且检测不受环境和地点的约束;服务器GPU上的头盔佩戴检测速率高达34 fps,能够满足工业实时性需要,但CR1030P-YT平台上的检测速率还有待提升。 展开更多
关键词 头盔佩戴检测 深度学习 SSD300模型 cr1030p-yt便携式安卓智能通信系统 卷积层conv4_3 atrous卷积
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部