This paper deals with an analytical model of thermal stresses which originate during a cooling process of an anisotropic solid continuum with uniaxial or triaxial anisotropy. The anisotropic solid continuum consists o...This paper deals with an analytical model of thermal stresses which originate during a cooling process of an anisotropic solid continuum with uniaxial or triaxial anisotropy. The anisotropic solid continuum consists of anisotropic spherical particles periodically distributed in an anisotropic infinite matrix. The particles are or are not embedded in an anisotropic spherical envelope, and the infinite matrix is imaginarily divided into identical cubic cells with central particles. The thermal stresses are thus investigated within the cubic cell. This mulfi-particle-(envelope)-matrix system based on the cell model is applicable to two- and three-component materials of precipitate-matrix and precipitate-envelope-matrix types, respectively. Finally, an analysis of the determination of the thermal stresses in the multi-par- ticle-(envelope)-matrix system which consists of isotropic as well as uniaxial- and/or triaxial-anisotropic components is presented. Additionally, the thermal-stress induced elastic energy density for the anisotropic components is also derived. These analytical models which are valid for isotropic, anisotropic and isotropic-anisotropic multi-particle- (envelope)-matrix systems represent the determination of important material characteristics. This analytical determination includes: (1) the determination of a critical particle radius which defines a limit state regarding the crack initiation in an elastic, elastic-plastic and plastic components; (2) the determination of dimensions and a shape of a crack propagated in a ceramic components; (3) the determination of an energy barrier and micro-/macro-strengthening in a component; and (4) analytical-(experimental)-computational methods of the lifetime prediction. The determination of the thermal stresses in the anisotropic components presented in this paper can be used to determine these material characteristics of real two- and three-component materials with anisotropic components or with anisotropic and isotropic components.展开更多
The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordin...The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.展开更多
Anisotropic plates in different applications may have geometric defects such as openings and cracks.The presence of the opening disturbs the heat flow,which creates significant thermal stress around the opening.When t...Anisotropic plates in different applications may have geometric defects such as openings and cracks.The presence of the opening disturbs the heat flow,which creates significant thermal stress around the opening.When the heat flux is high enough,these extreme stresses can lead to structural failure.This article aims to obtain the optimal parameters for achieving the minimum value of the normalized stress near the cutout’s boundary in perforated anisotropic plates utilizing the genetic algorithm.Optimization parameters include the curvature of opening’s corners,orientation angle of opening,fibers angle,heat flux angle,and opening’s elongation.The plate is under heat flux,and the opening’s border is thermally insulated.The stress distribution around the opening is calculated using Lekhnitskii’s complex variable method and complex potential functions.The genetic algorithm is then implemented to find the optimal values for design parameters.The results show that by selecting the optimal parameters related to the anisotropic material and the opening’s geometry,the stress intensity factor of the perforated anisotropic plates is remarkably reduced.Furthermore,this optimization algorithm can be extended to find the optimized parameters and achieve the optimal designs in anisotropic and isotropic perforated plates under thermal loadings.展开更多
Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ide...Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management.Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities.Compared with conventional composite fabrications by directly mixing graphene with polymers,preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances,enabling high manufacturing flexibility and controllability.In this review,we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites.Subsequently,we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications.Finally,our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.展开更多
文摘This paper deals with an analytical model of thermal stresses which originate during a cooling process of an anisotropic solid continuum with uniaxial or triaxial anisotropy. The anisotropic solid continuum consists of anisotropic spherical particles periodically distributed in an anisotropic infinite matrix. The particles are or are not embedded in an anisotropic spherical envelope, and the infinite matrix is imaginarily divided into identical cubic cells with central particles. The thermal stresses are thus investigated within the cubic cell. This mulfi-particle-(envelope)-matrix system based on the cell model is applicable to two- and three-component materials of precipitate-matrix and precipitate-envelope-matrix types, respectively. Finally, an analysis of the determination of the thermal stresses in the multi-par- ticle-(envelope)-matrix system which consists of isotropic as well as uniaxial- and/or triaxial-anisotropic components is presented. Additionally, the thermal-stress induced elastic energy density for the anisotropic components is also derived. These analytical models which are valid for isotropic, anisotropic and isotropic-anisotropic multi-particle- (envelope)-matrix systems represent the determination of important material characteristics. This analytical determination includes: (1) the determination of a critical particle radius which defines a limit state regarding the crack initiation in an elastic, elastic-plastic and plastic components; (2) the determination of dimensions and a shape of a crack propagated in a ceramic components; (3) the determination of an energy barrier and micro-/macro-strengthening in a component; and (4) analytical-(experimental)-computational methods of the lifetime prediction. The determination of the thermal stresses in the anisotropic components presented in this paper can be used to determine these material characteristics of real two- and three-component materials with anisotropic components or with anisotropic and isotropic components.
基金Project supported by the National Natural Science Foundation of China (Nos. 10472102 and 1043203)the Foundation of Ningbo University (No. 2005014), China
文摘The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.
文摘Anisotropic plates in different applications may have geometric defects such as openings and cracks.The presence of the opening disturbs the heat flow,which creates significant thermal stress around the opening.When the heat flux is high enough,these extreme stresses can lead to structural failure.This article aims to obtain the optimal parameters for achieving the minimum value of the normalized stress near the cutout’s boundary in perforated anisotropic plates utilizing the genetic algorithm.Optimization parameters include the curvature of opening’s corners,orientation angle of opening,fibers angle,heat flux angle,and opening’s elongation.The plate is under heat flux,and the opening’s border is thermally insulated.The stress distribution around the opening is calculated using Lekhnitskii’s complex variable method and complex potential functions.The genetic algorithm is then implemented to find the optimal values for design parameters.The results show that by selecting the optimal parameters related to the anisotropic material and the opening’s geometry,the stress intensity factor of the perforated anisotropic plates is remarkably reduced.Furthermore,this optimization algorithm can be extended to find the optimized parameters and achieve the optimal designs in anisotropic and isotropic perforated plates under thermal loadings.
文摘Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management.Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities.Compared with conventional composite fabrications by directly mixing graphene with polymers,preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances,enabling high manufacturing flexibility and controllability.In this review,we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites.Subsequently,we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications.Finally,our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.