目标身份切换现象在目前的视频多目标跟踪算法中普遍存在,特别是在遮挡严重的场景中.针对这一问题,提出一种结合了CRF(condition random field)模型和标签代价函数的多目标跟踪算法.该算法将多目标跟踪问题转化为求解统一能量函数的最...目标身份切换现象在目前的视频多目标跟踪算法中普遍存在,特别是在遮挡严重的场景中.针对这一问题,提出一种结合了CRF(condition random field)模型和标签代价函数的多目标跟踪算法.该算法将多目标跟踪问题转化为求解统一能量函数的最小解问题;同时,将目标的群组状态融合到跟踪器中,减少了目标发生身份切换的概率,提高了算法的鲁棒性.在多个公共数据集中对该算法进行仿真,实验结果显示,在多个性能指标特别是目标发生身份切换次数指标中,该算法优于目前主流的跟踪算法.展开更多
命名实体识别是自然语言处理领域中的关键技术,地名实体识别是命名实体识别中的重点和难点。结合英文地名具有构成随意、类型复杂繁多的特点,将地名实体识别问题转化为词序列标注的问题,结合条件随机场模型(Conditional Random Fields,C...命名实体识别是自然语言处理领域中的关键技术,地名实体识别是命名实体识别中的重点和难点。结合英文地名具有构成随意、类型复杂繁多的特点,将地名实体识别问题转化为词序列标注的问题,结合条件随机场模型(Conditional Random Fields,CRF),完成英文地名识别任务。展开更多
为了正确理解检索意图和客观表达用户的主观信息,结合CRF模型较高的语义区分率和歧义消解率等特点,对用户文本检索需求信息进行区分,同时选择关键词的上下文信息作为特征获取更丰富的信息,提出一种基于条件随机场(conditional random fi...为了正确理解检索意图和客观表达用户的主观信息,结合CRF模型较高的语义区分率和歧义消解率等特点,对用户文本检索需求信息进行区分,同时选择关键词的上下文信息作为特征获取更丰富的信息,提出一种基于条件随机场(conditional random field,CRF)模型的文本检索需求信息划分算法(CRF_Q),从而清晰地划分两个连续检索词间的边界.在锚文本相似度和检索词相似度两个属性相组合的实验结果中,决策树模型和CRF_Q算法最优,且CRF_Q算法的综合评价指标较决策树模型高4.4%.展开更多
文摘目标身份切换现象在目前的视频多目标跟踪算法中普遍存在,特别是在遮挡严重的场景中.针对这一问题,提出一种结合了CRF(condition random field)模型和标签代价函数的多目标跟踪算法.该算法将多目标跟踪问题转化为求解统一能量函数的最小解问题;同时,将目标的群组状态融合到跟踪器中,减少了目标发生身份切换的概率,提高了算法的鲁棒性.在多个公共数据集中对该算法进行仿真,实验结果显示,在多个性能指标特别是目标发生身份切换次数指标中,该算法优于目前主流的跟踪算法.
文摘为了正确理解检索意图和客观表达用户的主观信息,结合CRF模型较高的语义区分率和歧义消解率等特点,对用户文本检索需求信息进行区分,同时选择关键词的上下文信息作为特征获取更丰富的信息,提出一种基于条件随机场(conditional random field,CRF)模型的文本检索需求信息划分算法(CRF_Q),从而清晰地划分两个连续检索词间的边界.在锚文本相似度和检索词相似度两个属性相组合的实验结果中,决策树模型和CRF_Q算法最优,且CRF_Q算法的综合评价指标较决策树模型高4.4%.