Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emerge...Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature.展开更多
Clubroot disease is a severe threat to Brassica crops globally,particularly in western Canada.Genetic resistance,achieved through pyramiding clubroot resistance(CR)genes with different modes of action,is the most impo...Clubroot disease is a severe threat to Brassica crops globally,particularly in western Canada.Genetic resistance,achieved through pyramiding clubroot resistance(CR)genes with different modes of action,is the most important strategy for managing the disease.However,studies on the CR gene functions are quite limited.In this study,we have conducted investigations into the temporal,structural,and interacting features of a newly cloned CR gene,Rcr1,using CRISPR/Cas9 technology.For temporal functionality,we developed a novel CRISPR/Cas9-based binary vector,pHHIGR-Hsp18.2,to deliver Rcr1 into a susceptible canola line(DH12075)and observed that early expression of Rcr1 is critical for conferring resistance.For structural functionality,several independent mutations in specific domains of Rcr1 resulted in loss-offunction,highlighting their importance for CR phenotype.In the study of the interacting features of Rcr1,a cysteine protease gene and its homologous allele in canola were successfully disrupted via CRISPR/Cas9 as an interacting component with Rcr1 protein,resulting in the conversion from clubroot resistant to susceptible in plants carrying intact Rcr1.These results indicated an indispensable role of these two cysteine proteases in Rcr1-mediated resistance response.This study,the first of its kind,provides valuable insights into the functionality of Rcr1.Further,the new vector p HHIGR-Hsp18.2 demonstrated an inducible feature on the removal of add-on traits,which should be useful for functional genomics and other similar research in brassica crops.展开更多
Rice yield is an important and complex agronomic trait controlled by multiple genes.In recent decades,dozens of yield-associated genes in rice have been cloned,many of which can increase production in the form of loss...Rice yield is an important and complex agronomic trait controlled by multiple genes.In recent decades,dozens of yield-associated genes in rice have been cloned,many of which can increase production in the form of loss or degeneration of function.However,mutations occurring randomly under natural conditions have provided very limited genetic resources for yield increases.In this study,potentially yield-increasing alleles of two genes closely associated with yield were edited artificially.The recently developed CRISPR/Cas9system was used to edit two yield genes:Grain number 1a(Gn1a)and DENSE AND ERECT PANICLE1(DEP1).Several mutants were identified by a target sequence analysis.Phenotypic analysis confirmed one mutant allele of Gn1a and three of DEP1 conferring yield superior to that conferred by other natural high-yield alleles.Our results demonstrate that favorable alleles of the Gnla and DEP1 genes,which are considered key factors in rice yield increases,could be developed by artificial mutagenesis using genome editing technology.展开更多
High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 syst...High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T_0 generation, and GPC in the T_1 generation decreased significantly,owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis(RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.展开更多
Unbalanced brain serotonin(5-HT) levels have implications in various behavioral abnormalities and neuropsychiatric disorders. The biosynthesis of neuronal 5-HT is regulated by the rate-limiting enzyme, tryptophan hydr...Unbalanced brain serotonin(5-HT) levels have implications in various behavioral abnormalities and neuropsychiatric disorders. The biosynthesis of neuronal 5-HT is regulated by the rate-limiting enzyme, tryptophan hydroxylase-2(TPH2). In the present study, the clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated(Cas) system was used to target the Tph2 gene in Bama mini pig fetal fibroblasts. It was found that CRISPR/Cas9 targeting efficiency could be as high as 61.5%, and the biallelic mutation efficiency reached at38.5%. The biallelic modified colonies were used as donors for somatic cell nuclear transfer(SCNT) and 10 Tph2 targeted piglets were successfully generated. These Tph2 KO piglets were viable and appeared normal at the birth.However, their central 5-HT levels were dramatically reduced, and their survival and growth rates were impaired before weaning. These Tph2 KO pigs are valuable large-animal models for studies of 5-HT deficiency induced behavior abnomality.展开更多
Elimination of the CRISPR/Cas9 constructs in edited plants is a prerequisite for assessing genetic stability, conducting phenotypic characterization, and applying for commercialization of the plants. However, removal ...Elimination of the CRISPR/Cas9 constructs in edited plants is a prerequisite for assessing genetic stability, conducting phenotypic characterization, and applying for commercialization of the plants. However, removal of the CRISPR/Cas9 transgenes by genetic segregation and by backcross is laborious and time consuming. We previously reported the development of the transgene killer CRISPR(TKC) technology that uses a pair of suicide genes to trigger self-elimination of the transgenes without compromising gene editing efficiency. The TKC technology enables isolation of transgene-free CRISPR-edited plants within a single generation, greatly accelerating crop improvements. Here, we presented two new TKC vectors that show great efficiency in both editing the target gene and in undergoing self-elimination of the transgenes. The new vectors replaced the CaMV35 S promoter used in our previous TKC vector with two rice promoters to drive one of the suicide genes, providing advantages over our previous TKC vector under certain conditions. The vectors reported here offered more options and flexibility to conduct gene editing experiments in rice.展开更多
Gene therapy is a potentially effective treatment for retinal degenerative diseases.Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9) system has been developed as ...Gene therapy is a potentially effective treatment for retinal degenerative diseases.Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9) system has been developed as a new genome-editing tool in ophthalmic studies.Recent advances in researches showed that CRISPR/Cas9 has been applied in generating animal models as well as gene therapy in vivo of retinitis pigmentosa(RP) and leber congenital amaurosis(LCA).It has also been shown as a potential attempt for clinic by combining with other technologies such as adeno-associated virus(AAV) and induced pluripotent stem cells(i PSCs).In this review,we highlight the main points of further prospect of using CRISPR/Cas9 in targeting retinal degeneration.We also emphasize the potential applications of this technique in treating retinal degenerative diseases.展开更多
Targeted genome editing is a continually evolving technology employing programmable nucleases to specifically change,insert,or remove a genomic sequence of interest.These advanced molecular tools include meganucleases...Targeted genome editing is a continually evolving technology employing programmable nucleases to specifically change,insert,or remove a genomic sequence of interest.These advanced molecular tools include meganucleases,zinc finger nucleases,transcription activator-like effector nucleases and RNA-guided engineered nucleases(RGENs),which create double-strand breaks at specific target sites in the genome,and repair DNA either by homologous recombination in the presence of donor DNA or via the error-prone non-homologous end-joining mechanism.A recently discovered group of RGENs known as CRISPR/Cas9 gene-editing systems allowed precise genome manipulation revealing a causal association between disease genotype and phenotype,without the need for the reengineering of the specific enzyme when targeting different sequences.CRISPR/Cas9 has been successfully employed as an ex vivo gene-editing tool in embryonic stem cells and patient-derived stem cells to understand pancreatic beta-cell development and function.RNA-guided nucleases also open the way for the generation of novel animal models for diabetes and allow testing the efficiency of various therapeutic approaches in diabetes,as summarized and exemplified in this manuscript.展开更多
The typeⅡ prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox.However,its applications are still limited b...The typeⅡ prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox.However,its applications are still limited by its inefficient transduction.Herein,we present a novel gene vector,the zwitterionic polymer-inspired material with branched structure (ZEBRA) for efficient CRISPR/Cas9 delivery.Polo-like kinase 1 (PLK1) acts as a master regulator of mitosis and overexpresses in multiple tumor cells.The Cas9 and single guide sgRNA (sgRNA)-encoded plasmid was transduced to knockout Plk1 gene,which was expected to inhibit the expression of PLK1.Our studies demonstrated that ZEBRA enabled to transduce the CRISPR/Cas9 system with large size into the cells efficiently.The transduction with ZEBRA was cell line dependent,which showed~10-fold higher in CD44-positive cancer cell lines compared with CD44-negative ones.Furthermore,ZEBRA induced highlevel expression of Cas9 proteins by the delivery of CRISPR/Cas9 and efficient gene editing of Plk1 gene,and inhibited the tumor cell growth significantly.This zwitterionic polymerinspired material is an effective and targeted gene delivery vector and further studies are required to explore its potential in gene delivery applications.展开更多
Hepatocellular carcinoma(HCC)is now a common cause of cancer death,with no obvious change in patient survival over the past few years.Although the traditional therapeutic modalities for HCC patients mainly involved in...Hepatocellular carcinoma(HCC)is now a common cause of cancer death,with no obvious change in patient survival over the past few years.Although the traditional therapeutic modalities for HCC patients mainly involved in surgery,chemotherapy,and radiotherapy,which have achieved admirable achievements,challenges are still existed,such as drug resistance and toxicity.The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based(CRISPR/Cas9),as an alternative to traditional treatment methods,has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing.Recently,advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science,such as chemistry,materials science,tumor biology,and genetics.In this review,the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility.Additionally,the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC.Further,a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design,action mechanisms,and anticancer applications.Finally,the limitations and prospects of current studies were also discussed,and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.展开更多
Soybean oleic acid content is one of the important indexes to evaluate the quality of soybean oil.In the synthesis pathway of soybean fatty acids,the FAD2 gene family is the key gene that regulates the production of l...Soybean oleic acid content is one of the important indexes to evaluate the quality of soybean oil.In the synthesis pathway of soybean fatty acids,the FAD2 gene family is the key gene that regulates the production of linoleic acid from soybean oleic acid.In this study,CRISPR/Cas9 gene editing technology was used to regulate FAD2 gene expression.Firstly,the CRISPR/Cas9 single knockout vectors GmFAD2-1B and GmFAD2-2C and double knockout vectors GmFAD2-2A-3 were constructed.Then,the three vectors were transferred into the recipient soybean variety Jinong 38 by Agrobacterium-mediated cotyledon node transformation,and the mutant plants were obtained.Functional analysis and comparison of the mutant plants of the T2 and T3 generations were carried out.The results showed that there was no significant difference in agronomic traits between the CRISPR/Cas9 single and double knockout vectors and the untransformed CRISPR/Cas9 receptor varieties.The oleic acid content of the plants that knocked out the CRISPR/Cas9 double gene vector was significantly higher than that of the single gene vector.展开更多
Objective Charcot-Marie-Tooth disease(CMT)severely affects patient activity,and may cause disability.However,no clinical treatment is available to reverse the disease course.The combination of CRISPR/Cas9 and iPSCs ma...Objective Charcot-Marie-Tooth disease(CMT)severely affects patient activity,and may cause disability.However,no clinical treatment is available to reverse the disease course.The combination of CRISPR/Cas9 and iPSCs may have therapeutic potential against nervous diseases,such as CMT.Methods In the present study,the skin fibroblasts of CMT type 2D(CMT2D)patients with the c.880G>A heterozygous nucleotide mutation in the GARS gene were reprogrammed into iPSCs using three plasmids(pCXLE-hSK,pCXLE-hUL and pCXLE-hOCT3/4-shp5-F).Then,CRISPR/Cas9 technology was used to repair the mutated gene sites at the iPSC level.Results An iPSC line derived from the GARS(G294R)family with fibular atrophy was successfully induced,and the mutated gene loci were repaired at the iPSC level using CRISPR/Cas9 technology.These findings lay the foundation for future research on drug screening and cell therapy.Conclusion iPSCs can differentiate into different cell types,and originate from autologous cells.Therefore,they are promising for the development of autologous cell therapies for degenerative diseases.The combination of CRISPR/Cas9 and iPSCs may open a new avenue for the treatment of nervous diseases,such as CMT.展开更多
Clustered regulatory interspaced short palindromic repeats(CRISPR)has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade.In the study of ...Clustered regulatory interspaced short palindromic repeats(CRISPR)has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade.In the study of cancer,the CRISPR/CRISPR-associated protein(Cas)system opens new avenues into issues that were once unknown in our knowledge of the non-coding genome,tumor heterogeneity,and precision medicines.CRISPR/Cas-based geneediting technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs(miRNAs).However,the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities.This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy.Furthermore,we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.展开更多
Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9(CRISPR/Cas9)system has recently become one popular technology due to its efficiency,precision,and simplicity compared with other genome edi...Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9(CRISPR/Cas9)system has recently become one popular technology due to its efficiency,precision,and simplicity compared with other genome editing tools such as Zinc Finger Nucleases(ZFNs)and Transcription Activator Like Effector Nucleases(TALENs).Horticultural crops provide energy and health-keeping nutrients to humankind.Genome-editing technology has become widely adopted in horticultural breeding with the increasing demand for high yield and better-quality horticultural crops.Here,we describe the CRISPR/Cas9 system construction,its optimization,including sgRNA promoter,sgRNA design,Cas9 protein promoter,SpCas9 variants and orthologs,and vector delivery methods.We also summarized the application of this technology in horticultural plants for stress responses enhancement,fruit quality improvement,and cultivation traits modification.This detailed review was compiled to help establish comprehensive understanding of the CRISPR/Cas9 systems and provide a reference for further developing this technology to manipulate horticultural plant traits effectively.展开更多
文摘Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature.
基金supported by the Genomics Initiative of Agriculture and Agri-Food Canada。
文摘Clubroot disease is a severe threat to Brassica crops globally,particularly in western Canada.Genetic resistance,achieved through pyramiding clubroot resistance(CR)genes with different modes of action,is the most important strategy for managing the disease.However,studies on the CR gene functions are quite limited.In this study,we have conducted investigations into the temporal,structural,and interacting features of a newly cloned CR gene,Rcr1,using CRISPR/Cas9 technology.For temporal functionality,we developed a novel CRISPR/Cas9-based binary vector,pHHIGR-Hsp18.2,to deliver Rcr1 into a susceptible canola line(DH12075)and observed that early expression of Rcr1 is critical for conferring resistance.For structural functionality,several independent mutations in specific domains of Rcr1 resulted in loss-offunction,highlighting their importance for CR phenotype.In the study of the interacting features of Rcr1,a cysteine protease gene and its homologous allele in canola were successfully disrupted via CRISPR/Cas9 as an interacting component with Rcr1 protein,resulting in the conversion from clubroot resistant to susceptible in plants carrying intact Rcr1.These results indicated an indispensable role of these two cysteine proteases in Rcr1-mediated resistance response.This study,the first of its kind,provides valuable insights into the functionality of Rcr1.Further,the new vector p HHIGR-Hsp18.2 demonstrated an inducible feature on the removal of add-on traits,which should be useful for functional genomics and other similar research in brassica crops.
基金the Department of Sciences and Technology of Yunnan Province (2016BB001)the National Basic Research Program of China (2013CB835200)a Key Grant of Yunnan Provincial Science and Technology Department (2013GA004)
文摘Rice yield is an important and complex agronomic trait controlled by multiple genes.In recent decades,dozens of yield-associated genes in rice have been cloned,many of which can increase production in the form of loss or degeneration of function.However,mutations occurring randomly under natural conditions have provided very limited genetic resources for yield increases.In this study,potentially yield-increasing alleles of two genes closely associated with yield were edited artificially.The recently developed CRISPR/Cas9system was used to edit two yield genes:Grain number 1a(Gn1a)and DENSE AND ERECT PANICLE1(DEP1).Several mutants were identified by a target sequence analysis.Phenotypic analysis confirmed one mutant allele of Gn1a and three of DEP1 conferring yield superior to that conferred by other natural high-yield alleles.Our results demonstrate that favorable alleles of the Gnla and DEP1 genes,which are considered key factors in rice yield increases,could be developed by artificial mutagenesis using genome editing technology.
基金financially supported by National Key Research and Development Program of China(2016YFD0100501)the National Natural Science Foundation of China(31871241,31371233)+3 种基金the Natural Science Foundation of Jiangsu Province(BE2017345,PZCZ201702,BE2018351)the Research and Innovation Program of Postgraduate in Jiangsu Province(KYCX17_1886)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Yangzhou University International Academic Exchange Fund。
文摘High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T_0 generation, and GPC in the T_1 generation decreased significantly,owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis(RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.
基金supported by a grant from the National Natural Science Foundation of China (No.81570402)a grant from the Jiangsu Key Laboratory of Xenotransplantation (BM2012116)+3 种基金grants from the Sanming Project of Medicine in Shenzhenthe Fund for High Level Medical Discipline Construction of Shenzhen (No.2016031638)the Shenzhen Foundation of Science and Technology (No.JCYJ20160229204849975 and GCZX2015043017281705)grant from the National Basic Research Program of China (2015CB559200)
文摘Unbalanced brain serotonin(5-HT) levels have implications in various behavioral abnormalities and neuropsychiatric disorders. The biosynthesis of neuronal 5-HT is regulated by the rate-limiting enzyme, tryptophan hydroxylase-2(TPH2). In the present study, the clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated(Cas) system was used to target the Tph2 gene in Bama mini pig fetal fibroblasts. It was found that CRISPR/Cas9 targeting efficiency could be as high as 61.5%, and the biallelic mutation efficiency reached at38.5%. The biallelic modified colonies were used as donors for somatic cell nuclear transfer(SCNT) and 10 Tph2 targeted piglets were successfully generated. These Tph2 KO piglets were viable and appeared normal at the birth.However, their central 5-HT levels were dramatically reduced, and their survival and growth rates were impaired before weaning. These Tph2 KO pigs are valuable large-animal models for studies of 5-HT deficiency induced behavior abnomality.
基金supported by Chinese Ministry of Agriculture and Rural Affairs (Grant No. 2018ZX0801003B)the National Transgenic Science and Technology Program (Grant No. 2016ZX08010002)
文摘Elimination of the CRISPR/Cas9 constructs in edited plants is a prerequisite for assessing genetic stability, conducting phenotypic characterization, and applying for commercialization of the plants. However, removal of the CRISPR/Cas9 transgenes by genetic segregation and by backcross is laborious and time consuming. We previously reported the development of the transgene killer CRISPR(TKC) technology that uses a pair of suicide genes to trigger self-elimination of the transgenes without compromising gene editing efficiency. The TKC technology enables isolation of transgene-free CRISPR-edited plants within a single generation, greatly accelerating crop improvements. Here, we presented two new TKC vectors that show great efficiency in both editing the target gene and in undergoing self-elimination of the transgenes. The new vectors replaced the CaMV35 S promoter used in our previous TKC vector with two rice promoters to drive one of the suicide genes, providing advantages over our previous TKC vector under certain conditions. The vectors reported here offered more options and flexibility to conduct gene editing experiments in rice.
文摘Gene therapy is a potentially effective treatment for retinal degenerative diseases.Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9) system has been developed as a new genome-editing tool in ophthalmic studies.Recent advances in researches showed that CRISPR/Cas9 has been applied in generating animal models as well as gene therapy in vivo of retinitis pigmentosa(RP) and leber congenital amaurosis(LCA).It has also been shown as a potential attempt for clinic by combining with other technologies such as adeno-associated virus(AAV) and induced pluripotent stem cells(i PSCs).In this review,we highlight the main points of further prospect of using CRISPR/Cas9 in targeting retinal degeneration.We also emphasize the potential applications of this technique in treating retinal degenerative diseases.
基金the Akdeniz University Scientific Research Commission and the Scientific and Technological Research Council of Turkey,No.TUBITAK-215S820.
文摘Targeted genome editing is a continually evolving technology employing programmable nucleases to specifically change,insert,or remove a genomic sequence of interest.These advanced molecular tools include meganucleases,zinc finger nucleases,transcription activator-like effector nucleases and RNA-guided engineered nucleases(RGENs),which create double-strand breaks at specific target sites in the genome,and repair DNA either by homologous recombination in the presence of donor DNA or via the error-prone non-homologous end-joining mechanism.A recently discovered group of RGENs known as CRISPR/Cas9 gene-editing systems allowed precise genome manipulation revealing a causal association between disease genotype and phenotype,without the need for the reengineering of the specific enzyme when targeting different sequences.CRISPR/Cas9 has been successfully employed as an ex vivo gene-editing tool in embryonic stem cells and patient-derived stem cells to understand pancreatic beta-cell development and function.RNA-guided nucleases also open the way for the generation of novel animal models for diabetes and allow testing the efficiency of various therapeutic approaches in diabetes,as summarized and exemplified in this manuscript.
基金National Natural Science Foundation of China(82072047,81700382)Natural Science Foundation of Guangdong Province(2019A1515012166)+2 种基金Research Foundation of Education Bureau of Guangdong Province(2021ZDZX2004)Basic and Applied Basic Research Project of Guangzhou(02080390)Outstanding Youth Development Program of Guangzhou Medical University.
文摘The typeⅡ prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox.However,its applications are still limited by its inefficient transduction.Herein,we present a novel gene vector,the zwitterionic polymer-inspired material with branched structure (ZEBRA) for efficient CRISPR/Cas9 delivery.Polo-like kinase 1 (PLK1) acts as a master regulator of mitosis and overexpresses in multiple tumor cells.The Cas9 and single guide sgRNA (sgRNA)-encoded plasmid was transduced to knockout Plk1 gene,which was expected to inhibit the expression of PLK1.Our studies demonstrated that ZEBRA enabled to transduce the CRISPR/Cas9 system with large size into the cells efficiently.The transduction with ZEBRA was cell line dependent,which showed~10-fold higher in CD44-positive cancer cell lines compared with CD44-negative ones.Furthermore,ZEBRA induced highlevel expression of Cas9 proteins by the delivery of CRISPR/Cas9 and efficient gene editing of Plk1 gene,and inhibited the tumor cell growth significantly.This zwitterionic polymerinspired material is an effective and targeted gene delivery vector and further studies are required to explore its potential in gene delivery applications.
基金supported by the National Natural Science Foundation of China(grant no.82172767).
文摘Hepatocellular carcinoma(HCC)is now a common cause of cancer death,with no obvious change in patient survival over the past few years.Although the traditional therapeutic modalities for HCC patients mainly involved in surgery,chemotherapy,and radiotherapy,which have achieved admirable achievements,challenges are still existed,such as drug resistance and toxicity.The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based(CRISPR/Cas9),as an alternative to traditional treatment methods,has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing.Recently,advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science,such as chemistry,materials science,tumor biology,and genetics.In this review,the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility.Additionally,the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC.Further,a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design,action mechanisms,and anticancer applications.Finally,the limitations and prospects of current studies were also discussed,and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.
基金This work was supported by the National Natural Science Foundation of China Project Nos.[31771817,31801381]National Key Research and Development Program[2019YFD1002603-1].
文摘Soybean oleic acid content is one of the important indexes to evaluate the quality of soybean oil.In the synthesis pathway of soybean fatty acids,the FAD2 gene family is the key gene that regulates the production of linoleic acid from soybean oleic acid.In this study,CRISPR/Cas9 gene editing technology was used to regulate FAD2 gene expression.Firstly,the CRISPR/Cas9 single knockout vectors GmFAD2-1B and GmFAD2-2C and double knockout vectors GmFAD2-2A-3 were constructed.Then,the three vectors were transferred into the recipient soybean variety Jinong 38 by Agrobacterium-mediated cotyledon node transformation,and the mutant plants were obtained.Functional analysis and comparison of the mutant plants of the T2 and T3 generations were carried out.The results showed that there was no significant difference in agronomic traits between the CRISPR/Cas9 single and double knockout vectors and the untransformed CRISPR/Cas9 receptor varieties.The oleic acid content of the plants that knocked out the CRISPR/Cas9 double gene vector was significantly higher than that of the single gene vector.
基金supported by grants from the National Major Scientific and Technological Special Project for“Significant New Drugs Development”(No.2019ZX09301159)the“Thousand Talent Program”for Science and Technology Innovation Leader in Henan(No.194200510002)+1 种基金the Bingtuan Science and Technology Project(No.2019AB034)the Natural Science Foundation of Henan Province of China(No.202300410381).
文摘Objective Charcot-Marie-Tooth disease(CMT)severely affects patient activity,and may cause disability.However,no clinical treatment is available to reverse the disease course.The combination of CRISPR/Cas9 and iPSCs may have therapeutic potential against nervous diseases,such as CMT.Methods In the present study,the skin fibroblasts of CMT type 2D(CMT2D)patients with the c.880G>A heterozygous nucleotide mutation in the GARS gene were reprogrammed into iPSCs using three plasmids(pCXLE-hSK,pCXLE-hUL and pCXLE-hOCT3/4-shp5-F).Then,CRISPR/Cas9 technology was used to repair the mutated gene sites at the iPSC level.Results An iPSC line derived from the GARS(G294R)family with fibular atrophy was successfully induced,and the mutated gene loci were repaired at the iPSC level using CRISPR/Cas9 technology.These findings lay the foundation for future research on drug screening and cell therapy.Conclusion iPSCs can differentiate into different cell types,and originate from autologous cells.Therefore,they are promising for the development of autologous cell therapies for degenerative diseases.The combination of CRISPR/Cas9 and iPSCs may open a new avenue for the treatment of nervous diseases,such as CMT.
文摘Clustered regulatory interspaced short palindromic repeats(CRISPR)has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade.In the study of cancer,the CRISPR/CRISPR-associated protein(Cas)system opens new avenues into issues that were once unknown in our knowledge of the non-coding genome,tumor heterogeneity,and precision medicines.CRISPR/Cas-based geneediting technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs(miRNAs).However,the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities.This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy.Furthermore,we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
基金supported by grants from the National Key R&D Program of China (Grant No. 2018YFD1000100)National Natural Science Foundation of China (Grant No. 31972378)Agricultural Variety Improvement Project of Shandong Province (Grant No. 2019LZGC007)
文摘Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9(CRISPR/Cas9)system has recently become one popular technology due to its efficiency,precision,and simplicity compared with other genome editing tools such as Zinc Finger Nucleases(ZFNs)and Transcription Activator Like Effector Nucleases(TALENs).Horticultural crops provide energy and health-keeping nutrients to humankind.Genome-editing technology has become widely adopted in horticultural breeding with the increasing demand for high yield and better-quality horticultural crops.Here,we describe the CRISPR/Cas9 system construction,its optimization,including sgRNA promoter,sgRNA design,Cas9 protein promoter,SpCas9 variants and orthologs,and vector delivery methods.We also summarized the application of this technology in horticultural plants for stress responses enhancement,fruit quality improvement,and cultivation traits modification.This detailed review was compiled to help establish comprehensive understanding of the CRISPR/Cas9 systems and provide a reference for further developing this technology to manipulate horticultural plant traits effectively.