Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9(CRISPR/Cas9)system has recently become one popular technology due to its efficiency,precision,and simplicity compared with other genome edi...Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9(CRISPR/Cas9)system has recently become one popular technology due to its efficiency,precision,and simplicity compared with other genome editing tools such as Zinc Finger Nucleases(ZFNs)and Transcription Activator Like Effector Nucleases(TALENs).Horticultural crops provide energy and health-keeping nutrients to humankind.Genome-editing technology has become widely adopted in horticultural breeding with the increasing demand for high yield and better-quality horticultural crops.Here,we describe the CRISPR/Cas9 system construction,its optimization,including sgRNA promoter,sgRNA design,Cas9 protein promoter,SpCas9 variants and orthologs,and vector delivery methods.We also summarized the application of this technology in horticultural plants for stress responses enhancement,fruit quality improvement,and cultivation traits modification.This detailed review was compiled to help establish comprehensive understanding of the CRISPR/Cas9 systems and provide a reference for further developing this technology to manipulate horticultural plant traits effectively.展开更多
Pigs are an important resource in agriculture and serve as a model for human diseases. Due to their physiological and anatomical similarities with humans, pigs can recapitulate symptoms of human diseases, making them ...Pigs are an important resource in agriculture and serve as a model for human diseases. Due to their physiological and anatomical similarities with humans, pigs can recapitulate symptoms of human diseases, making them a useful model in biomedicine. However, in the past pig models have not been widely used partially because of the difficulty in genetic modification. The lack of true embryonic stem cells in pigs forced researchers to utilize genetic modification in somatic cells and somatic cell nuclear transfer(SCNT) to generate genetically engineered(GE) pigs carrying site-specific modifications. Although possible, this approach is extremely inefficient and GE pigs born through this method often presented developmental defects associated with the cloning process. Advancement in the gene-editing systems such as Zinc-Finger Nucleases(ZFNs), Transcription activator-like effector nucleases(TALENs), and the Clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated 9(Cas9) system have dramatically increased the efficiency of producing GE pigs. These gene-editing systems, specifically engineered endonucleases, are based on inducing double-stranded breaks(DSBs) at a specific location, and then site-specific modifications can be introduced through one of the two DNA repair pathways: non-homologous end joining(NHEJ) or homology direct repair(HDR).Random insertions or deletions(indels) can be introduced through NHEJ and specific nucleotide sequences can be introduced through HDR, if donor DNA is provided. Use of these engineered endonucleases provides a higher success in genetic modifications, multiallelic modification of the genome, and an opportunity to introduce site-specific modifications during embryogenesis, thus bypassing the need of SCNT in GE pig production. This review will provide a historical prospective of GE pig production and examples of how the gene-editing system, led by engineered endonucleases, have improved GE pig production. We wil also present some of our current progress related to the optimal use of CRISPR/Cas9 system during embryogenesis.展开更多
The recently developed RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) nuclease system has progressed to be an invaluable technology for genome manipulation ...The recently developed RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) nuclease system has progressed to be an invaluable technology for genome manipulation in somatic cell types and germline model organisms. While the unprecedented advance in human embryo gene editing research has great potential in next-generation therapeutics, it raises various ethical concerns that need to be addressed before being translated for clinical use. Here, we discuss the current and potential applications of CRISPR/Cas9 technology and its limitations in clinical applications, as well as ethical and legal considerations in the treatment, disease prevention or disability in somatic cells or human embryo via gene editing.展开更多
Dear Editor,Despite tremendous effort devoted to the development of antiretroviral therapies to combat HIV over the past decades, AIDS remains one of the most important global infectious diseases. According to UNAIDS ...Dear Editor,Despite tremendous effort devoted to the development of antiretroviral therapies to combat HIV over the past decades, AIDS remains one of the most important global infectious diseases. According to UNAIDS report on the global AIDS epidemic in 2016, the estimated number of people living with HIV rose from 7.5 million in 2010 to 36.7 million in 2015. Furthermore, drug-resistance HIV strains have recently been reported (Wensing et al., 2017). Therefore, it is important to develop new therapies to eliminate HIV in the patients. Immortalized cell lines representing the major targets of HIV in human are important for HIV research and therapeutic development.展开更多
Comprehensive Summary Currently,CRISPR/Cas9 technology has found widespread applications across various domains.However,the utility of CRISPR/Cas9 is encumbered by issues pertaining to its reliability and safety,prima...Comprehensive Summary Currently,CRISPR/Cas9 technology has found widespread applications across various domains.However,the utility of CRISPR/Cas9 is encumbered by issues pertaining to its reliability and safety,primarily stemming from the uncontrolled activity of the system.Therefore,the design and development of CRISPR/Cas9 systems with controllable activity is of paramount importance.Biotin,characterized by its small molecular weight,and streptavidin,distinguished by its substantial spatial steric hindrance,can be harnessed as an ideal OFF switch(termed a"bioactivity brake")due to their interaction characteristics.In this work,we present a strategy that employs the streptavidin-biotin interaction as a"brake system"for CRISPR/Cas9,effectively allowing for the shutdown of the enzymatic activity of CRISPR/Cas9.展开更多
目的探究盘状结构域受体1(discoidin domain receptors,DDR1)在慢性结肠炎小鼠肠道炎症及肠纤维化中的功能。方法针对DDR1基因exon4设计并合成gRNA序列,与编码Cas9的mRNA混合显微注射入C57BL/6小鼠受精卵内,构建DDR1基因突变小鼠。选择F...目的探究盘状结构域受体1(discoidin domain receptors,DDR1)在慢性结肠炎小鼠肠道炎症及肠纤维化中的功能。方法针对DDR1基因exon4设计并合成gRNA序列,与编码Cas9的mRNA混合显微注射入C57BL/6小鼠受精卵内,构建DDR1基因突变小鼠。选择F4代基因敲除纯合子小鼠(DDR1^(-/-))和野生型C57BL/6小鼠,通过葡聚糖硫酸钠(DSS)诱导慢性结肠炎模型。比较两组小鼠疾病活动指数(DAI)、体质量、结肠长度及组织病理学变化。ELISA法检测外周血细胞因子的含量,Western blot法检测小鼠结肠纤维化相关蛋白表达。结果PCR法检测结果显示利用CRISPR/Cas9技术成功构建DDR1^(-/-)小鼠;循环饮用DSS后,与野生型小鼠相比,DDR1^(-/-)小鼠体质量下降减缓,DAI评分及肠组织病理学评分降低,结肠短缩减轻(5.81±0.11 cm vs 5.19±0.05 cm,P<0.05);血清IL-1β、TNF-α及TGF-β水平下调(P<0.01);Masson染色胶原容积评分显示肠纤维化减轻(DSS-WT vs DSS-DDR1,41.43±0.08 cm vs 21.37±0.07 cm,P<0.01);肠组织TGF-β、α-SMA和COL1A1的蛋白表达下降。结论DDR1参与慢性结肠炎的发生,敲除DDR1基因可减轻慢性结肠炎肠道炎症及纤维化的症状和疾病进程。展开更多
Pyricularia oryzae anamorph of Magnaporthe oryzae is one of the most notorious fungal pathogens causing severe economic loss in rice production worldwide. Various methods, viz. cultural, biological and molecular appro...Pyricularia oryzae anamorph of Magnaporthe oryzae is one of the most notorious fungal pathogens causing severe economic loss in rice production worldwide. Various methods, viz. cultural, biological and molecular approaches, are utilized to counteract this pathogen. Moreover, some tolerant or resistant rice varieties have been developed with the help of breeding programmes. Isolation and molecular characterization of different blast resistance genes now open the gate for new possibilities to elucidate the actual allelic variants of these genes via various molecular breeding and transgenic approaches. However, the behavioral pattern of this fungus breakups the resistance barriers in the resistant or tolerant rice varieties. This host-pathogen barrier will be possibly countered in future research by comparative genomics data from available genome sequence data of rice and M. oryzae for durable resistance. Present review emphasized fascinating recent updates, new molecular breeding approaches, transgenic and genomics approaches(i.e. mi RNA and genome editing) for the management of blast disease in rice. The updated information will be helpful for the durable, resistance breeding programme in rice against blast pathogen.展开更多
The emerging pests and phytopathogens have reduced the crop yield and quality, which hasthreatened the global food security. Traditional breeding methods, molecular marker-based breedingapproaches and use of genetical...The emerging pests and phytopathogens have reduced the crop yield and quality, which hasthreatened the global food security. Traditional breeding methods, molecular marker-based breedingapproaches and use of genetically modified crops have played a crucial role in strengthening the foodsecurity worldwide. However, their usages in crop improvement have been highly limited due to multiplecaveats. Genome editing tools like transcriptional activator-like effector nucleases and clustered regularlyinterspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 (CRISPR/Cas9) haveeffectively overcome limitations of the conventional breeding methods and are being widely accepted forimprovement of crops. Among the genome editing tools, the CRISPR/Cas9 system has emerged as themost powerful tool of genome editing because of its efficiency, amicability, flexibility, low cost andadaptability. Accumulated evidences indicate that genome editing has great potential in improving thedisease resistance in crop plants. In this review, we offered a brief introduction to the mechanisms of differentgenome editing systems and then discussed recent developments in CRISPR/Cas9 system-based genomeediting towards enhancement of rice disease resistance by different strategies. This review also discussed thepossible applications of recently developed genome editing approaches like CRISPR/Cas12a (formerlyknown as Cpf1) and base editors for enhancement of rice disease resistance.展开更多
Background:T-cell acute lymphoblastic leukemia(T-ALL)is an uncommon and aggressive subtype of acute lymphoblastic leukemia(ALL).In the serum of T-ALL patients,the activity of lactate dehydrogenase A(LDHA)is increased....Background:T-cell acute lymphoblastic leukemia(T-ALL)is an uncommon and aggressive subtype of acute lymphoblastic leukemia(ALL).In the serum of T-ALL patients,the activity of lactate dehydrogenase A(LDHA)is increased.We proposed that targeting LDHA may be a potential strategy to improve T-ALL outcomes.The current study was conducted to investigate the antileukemic effect of LDHA gene-targeting treatment on T-ALL and the underlying molecular mechanism.Methods:Primary T-ALL cell lines Jurkat and DU528 were treated with the LDH inhibitor oxamate.MTT,colony formation,apoptosis,and cell cycle assays were performed to investigate the effects of oxamate on T-ALL cells.Quantitative real-time PCR(qPCR)and Western blotting analyses were applied to determine the related signaling pathways.A mitochondrial reactive oxygen species(ROS)assay was performed to evaluate ROS production after T-ALL cells were treated with oxamate.A T-ALL transgenic zebrafish model with LDHA gene knockdown was established using CRISPR/Cas9 gene-editing technology,and then TUNEL,Western blotting,and T-ALL tumor progression analyses were conducted to investigate the effects of LDHA gene knockdown on T-ALL transgenic zebrafish.Results:Oxamate significantly inhibited proliferation and induced apoptosis of Jurkat and DU528 cells.It also arrested Jurkat and DU528 cells in G0/G1 phase and stimulated ROS production(all P<0.001).Blocking LDHA significantly decreased the gene and protein expression of c-Myc,as well as the levels of phosphorylated serine/threonine kinase(AKT)and glycogen synthase kinase 3 beta(GSK-3β)in the phosphatidylinositol 3′-kinase(PI3K)signaling pathway.LDHA gene knockdown delayed disease progression and down-regulated c-Myc mRNA and protein expression in T-ALL transgenic zebrafish.Conclusion:Targeting LDHA exerted an antileukemic effect on T-ALL,representing a potential strategy for T-ALL treatment.展开更多
基金supported by grants from the National Key R&D Program of China (Grant No. 2018YFD1000100)National Natural Science Foundation of China (Grant No. 31972378)Agricultural Variety Improvement Project of Shandong Province (Grant No. 2019LZGC007)
文摘Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9(CRISPR/Cas9)system has recently become one popular technology due to its efficiency,precision,and simplicity compared with other genome editing tools such as Zinc Finger Nucleases(ZFNs)and Transcription Activator Like Effector Nucleases(TALENs).Horticultural crops provide energy and health-keeping nutrients to humankind.Genome-editing technology has become widely adopted in horticultural breeding with the increasing demand for high yield and better-quality horticultural crops.Here,we describe the CRISPR/Cas9 system construction,its optimization,including sgRNA promoter,sgRNA design,Cas9 protein promoter,SpCas9 variants and orthologs,and vector delivery methods.We also summarized the application of this technology in horticultural plants for stress responses enhancement,fruit quality improvement,and cultivation traits modification.This detailed review was compiled to help establish comprehensive understanding of the CRISPR/Cas9 systems and provide a reference for further developing this technology to manipulate horticultural plant traits effectively.
基金the National Institutes of Health R21OD019934(KL)and U42OD011140(RSP)
文摘Pigs are an important resource in agriculture and serve as a model for human diseases. Due to their physiological and anatomical similarities with humans, pigs can recapitulate symptoms of human diseases, making them a useful model in biomedicine. However, in the past pig models have not been widely used partially because of the difficulty in genetic modification. The lack of true embryonic stem cells in pigs forced researchers to utilize genetic modification in somatic cells and somatic cell nuclear transfer(SCNT) to generate genetically engineered(GE) pigs carrying site-specific modifications. Although possible, this approach is extremely inefficient and GE pigs born through this method often presented developmental defects associated with the cloning process. Advancement in the gene-editing systems such as Zinc-Finger Nucleases(ZFNs), Transcription activator-like effector nucleases(TALENs), and the Clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated 9(Cas9) system have dramatically increased the efficiency of producing GE pigs. These gene-editing systems, specifically engineered endonucleases, are based on inducing double-stranded breaks(DSBs) at a specific location, and then site-specific modifications can be introduced through one of the two DNA repair pathways: non-homologous end joining(NHEJ) or homology direct repair(HDR).Random insertions or deletions(indels) can be introduced through NHEJ and specific nucleotide sequences can be introduced through HDR, if donor DNA is provided. Use of these engineered endonucleases provides a higher success in genetic modifications, multiallelic modification of the genome, and an opportunity to introduce site-specific modifications during embryogenesis, thus bypassing the need of SCNT in GE pig production. This review will provide a historical prospective of GE pig production and examples of how the gene-editing system, led by engineered endonucleases, have improved GE pig production. We wil also present some of our current progress related to the optimal use of CRISPR/Cas9 system during embryogenesis.
文摘The recently developed RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) nuclease system has progressed to be an invaluable technology for genome manipulation in somatic cell types and germline model organisms. While the unprecedented advance in human embryo gene editing research has great potential in next-generation therapeutics, it raises various ethical concerns that need to be addressed before being translated for clinical use. Here, we discuss the current and potential applications of CRISPR/Cas9 technology and its limitations in clinical applications, as well as ethical and legal considerations in the treatment, disease prevention or disability in somatic cells or human embryo via gene editing.
文摘Dear Editor,Despite tremendous effort devoted to the development of antiretroviral therapies to combat HIV over the past decades, AIDS remains one of the most important global infectious diseases. According to UNAIDS report on the global AIDS epidemic in 2016, the estimated number of people living with HIV rose from 7.5 million in 2010 to 36.7 million in 2015. Furthermore, drug-resistance HIV strains have recently been reported (Wensing et al., 2017). Therefore, it is important to develop new therapies to eliminate HIV in the patients. Immortalized cell lines representing the major targets of HIV in human are important for HIV research and therapeutic development.
基金the National Natural Science Foundation of China(Nos.22177089,21721005,92153303,22037004,22177088)the Fundamental Research Funds for the Central Universities(2042023kf0204)Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University(Grant No.ZNJC202309).
文摘Comprehensive Summary Currently,CRISPR/Cas9 technology has found widespread applications across various domains.However,the utility of CRISPR/Cas9 is encumbered by issues pertaining to its reliability and safety,primarily stemming from the uncontrolled activity of the system.Therefore,the design and development of CRISPR/Cas9 systems with controllable activity is of paramount importance.Biotin,characterized by its small molecular weight,and streptavidin,distinguished by its substantial spatial steric hindrance,can be harnessed as an ideal OFF switch(termed a"bioactivity brake")due to their interaction characteristics.In this work,we present a strategy that employs the streptavidin-biotin interaction as a"brake system"for CRISPR/Cas9,effectively allowing for the shutdown of the enzymatic activity of CRISPR/Cas9.
文摘目的探究盘状结构域受体1(discoidin domain receptors,DDR1)在慢性结肠炎小鼠肠道炎症及肠纤维化中的功能。方法针对DDR1基因exon4设计并合成gRNA序列,与编码Cas9的mRNA混合显微注射入C57BL/6小鼠受精卵内,构建DDR1基因突变小鼠。选择F4代基因敲除纯合子小鼠(DDR1^(-/-))和野生型C57BL/6小鼠,通过葡聚糖硫酸钠(DSS)诱导慢性结肠炎模型。比较两组小鼠疾病活动指数(DAI)、体质量、结肠长度及组织病理学变化。ELISA法检测外周血细胞因子的含量,Western blot法检测小鼠结肠纤维化相关蛋白表达。结果PCR法检测结果显示利用CRISPR/Cas9技术成功构建DDR1^(-/-)小鼠;循环饮用DSS后,与野生型小鼠相比,DDR1^(-/-)小鼠体质量下降减缓,DAI评分及肠组织病理学评分降低,结肠短缩减轻(5.81±0.11 cm vs 5.19±0.05 cm,P<0.05);血清IL-1β、TNF-α及TGF-β水平下调(P<0.01);Masson染色胶原容积评分显示肠纤维化减轻(DSS-WT vs DSS-DDR1,41.43±0.08 cm vs 21.37±0.07 cm,P<0.01);肠组织TGF-β、α-SMA和COL1A1的蛋白表达下降。结论DDR1参与慢性结肠炎的发生,敲除DDR1基因可减轻慢性结肠炎肠道炎症及纤维化的症状和疾病进程。
文摘Pyricularia oryzae anamorph of Magnaporthe oryzae is one of the most notorious fungal pathogens causing severe economic loss in rice production worldwide. Various methods, viz. cultural, biological and molecular approaches, are utilized to counteract this pathogen. Moreover, some tolerant or resistant rice varieties have been developed with the help of breeding programmes. Isolation and molecular characterization of different blast resistance genes now open the gate for new possibilities to elucidate the actual allelic variants of these genes via various molecular breeding and transgenic approaches. However, the behavioral pattern of this fungus breakups the resistance barriers in the resistant or tolerant rice varieties. This host-pathogen barrier will be possibly countered in future research by comparative genomics data from available genome sequence data of rice and M. oryzae for durable resistance. Present review emphasized fascinating recent updates, new molecular breeding approaches, transgenic and genomics approaches(i.e. mi RNA and genome editing) for the management of blast disease in rice. The updated information will be helpful for the durable, resistance breeding programme in rice against blast pathogen.
基金the China Priority Program-Breeding of Seven Major Crops(Grant No.2017YFD01100100)the Innovation Program of Chinese Academy of Agricultural Sciences(Grant No.01-ICS)the Talented Young Scientist Program of China(Grant No.India-17-01).
文摘The emerging pests and phytopathogens have reduced the crop yield and quality, which hasthreatened the global food security. Traditional breeding methods, molecular marker-based breedingapproaches and use of genetically modified crops have played a crucial role in strengthening the foodsecurity worldwide. However, their usages in crop improvement have been highly limited due to multiplecaveats. Genome editing tools like transcriptional activator-like effector nucleases and clustered regularlyinterspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 (CRISPR/Cas9) haveeffectively overcome limitations of the conventional breeding methods and are being widely accepted forimprovement of crops. Among the genome editing tools, the CRISPR/Cas9 system has emerged as themost powerful tool of genome editing because of its efficiency, amicability, flexibility, low cost andadaptability. Accumulated evidences indicate that genome editing has great potential in improving thedisease resistance in crop plants. In this review, we offered a brief introduction to the mechanisms of differentgenome editing systems and then discussed recent developments in CRISPR/Cas9 system-based genomeediting towards enhancement of rice disease resistance by different strategies. This review also discussed thepossible applications of recently developed genome editing approaches like CRISPR/Cas12a (formerlyknown as Cpf1) and base editors for enhancement of rice disease resistance.
基金This work was supported by the National Natural Science Foundation of China(81200368,81670160)the Hunan Natural Science Foundation(2017JJ2355).
文摘Background:T-cell acute lymphoblastic leukemia(T-ALL)is an uncommon and aggressive subtype of acute lymphoblastic leukemia(ALL).In the serum of T-ALL patients,the activity of lactate dehydrogenase A(LDHA)is increased.We proposed that targeting LDHA may be a potential strategy to improve T-ALL outcomes.The current study was conducted to investigate the antileukemic effect of LDHA gene-targeting treatment on T-ALL and the underlying molecular mechanism.Methods:Primary T-ALL cell lines Jurkat and DU528 were treated with the LDH inhibitor oxamate.MTT,colony formation,apoptosis,and cell cycle assays were performed to investigate the effects of oxamate on T-ALL cells.Quantitative real-time PCR(qPCR)and Western blotting analyses were applied to determine the related signaling pathways.A mitochondrial reactive oxygen species(ROS)assay was performed to evaluate ROS production after T-ALL cells were treated with oxamate.A T-ALL transgenic zebrafish model with LDHA gene knockdown was established using CRISPR/Cas9 gene-editing technology,and then TUNEL,Western blotting,and T-ALL tumor progression analyses were conducted to investigate the effects of LDHA gene knockdown on T-ALL transgenic zebrafish.Results:Oxamate significantly inhibited proliferation and induced apoptosis of Jurkat and DU528 cells.It also arrested Jurkat and DU528 cells in G0/G1 phase and stimulated ROS production(all P<0.001).Blocking LDHA significantly decreased the gene and protein expression of c-Myc,as well as the levels of phosphorylated serine/threonine kinase(AKT)and glycogen synthase kinase 3 beta(GSK-3β)in the phosphatidylinositol 3′-kinase(PI3K)signaling pathway.LDHA gene knockdown delayed disease progression and down-regulated c-Myc mRNA and protein expression in T-ALL transgenic zebrafish.Conclusion:Targeting LDHA exerted an antileukemic effect on T-ALL,representing a potential strategy for T-ALL treatment.