Objective:Osteosarcoma is the most common primary malignant bone tumor.However,the survival of patients with osteosarcoma has remained unchanged during the past 30 years,owing to a lack of efficient therapeutic target...Objective:Osteosarcoma is the most common primary malignant bone tumor.However,the survival of patients with osteosarcoma has remained unchanged during the past 30 years,owing to a lack of efficient therapeutic targets.Methods:We constructed a kinome-targeting CRISPR-Cas9 library containing 507 kinases and 100 nontargeting controls and screened the potential kinase targets in osteosarcoma.The CRISPR screening sequencing data were analyzed with the Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout(MAGeCK)Python package.The functional data were applied in the 143B cell line through lenti-CRISPR-mediated gene knockout.The clinical significance of kinases in the survival of patients with osteosarcoma was analyzed in the R2:Genomics Analysis and Visualization Platform.Results:We identified 53 potential kinase targets in osteosarcoma.Among these targets,we analyzed 3 kinases,TRRAP,PKMYT1,and TP53RK,to validate their oncogenic functions in osteosarcoma.PKMYT1 and TP53RK showed higher expression in osteosarcoma than in normal bone tissue,whereas TRRAP showed no significant difference.High expression of all 3 kinases was associated with relatively poor prognosis in patients with osteosarcoma.Conclusions:Our results not only offer potential therapeutic kinase targets in osteosarcoma but also provide a paradigm for functional genetic screening by using a CRISPR-Cas9 library,including target design,library construction,screening workflow,data analysis,and functional validation.This method may also be useful in potentially accelerating drug discovery for other cancer types.展开更多
The efficiency of plant cytidine base-editing systems is limited, and unwanted mutations frequently occur in transgenic plants. We increased the cytidine editing frequency and fidelity of the plant base editor 3(BE3) ...The efficiency of plant cytidine base-editing systems is limited, and unwanted mutations frequently occur in transgenic plants. We increased the cytidine editing frequency and fidelity of the plant base editor 3(BE3) and targeted activation-induced cytidine deaminase(CDA)(target-AID) systems by coexpressing three copies of free uracil–DNA glycosylase(UDG) inhibitor(UGI). The editing efficiency of the improved BE3 and CDA systems reached as high as 88.9% and 85.7%, respectively, in regenerated rice plants, with a very low frequency of unwanted mutations. The low editing frequency of the BE3 system in the GC context could be overcome by the modified CDA system. These results provide a highfidelity and high-efficiency solution for rice genomic base editing.展开更多
CRISPR-mediated genome editing is a revolutionary technology for genome manipulation that uses the CRISPR-Cas systems and base editors.Currently,poor efficiency and off-target problems have impeded the application of ...CRISPR-mediated genome editing is a revolutionary technology for genome manipulation that uses the CRISPR-Cas systems and base editors.Currently,poor efficiency and off-target problems have impeded the application of CRISPR systems.The on-target efficiency has been improved in several advanced versions of CRISPR systems,whereas the off-target detection still remains a key challenge.Here,we outline the different versions of CRISPR systems and off-target detection strategies,discuss the merits and limitations of off-target detection methods,and provide potential implications for further gene editing research.展开更多
Since its discovery as a bacterial adaptive immune system and its development for genome editing in eukaryotes,the CRISPR technology has revolutionized plant research and precision crop breeding.The CRISPR toolbox hol...Since its discovery as a bacterial adaptive immune system and its development for genome editing in eukaryotes,the CRISPR technology has revolutionized plant research and precision crop breeding.The CRISPR toolbox holds great promise in the production of crops with genetic disease resistance to increase agriculture resilience and reduce chemical crop protection with a strong impact on the environment and public health.In this review,we provide an extensive overviewon recent breakthroughs in CRISPR technology,including the newly developed prime editing system that allows precision gene editing in plants.We present how each CRISPR tool can be selected for optimal use in accordance with its specific strengths and limitations,and illustrate how the CRISPR toolbox can foster the development of genetically pathogen-resistant crops for sustainable agriculture.展开更多
CRISPR-Cas-based genome editing holds immense promise for advancing plant genomics and crop enhancement.However,the challenge of low editing activity complicates the identification of editing events.In this study,we i...CRISPR-Cas-based genome editing holds immense promise for advancing plant genomics and crop enhancement.However,the challenge of low editing activity complicates the identification of editing events.In this study,we introduce multiple single transcript unit surrogate reporter(STU-SR)systems to enhance the selection of genome-edited plants.These systems use the same single guide RNAs designed for endogenous genes to edit reporter genes,establishing a direct link between reporter gene editing activity and that of endogenous genes.Various strategies are used to restore functional reporter genes after genome editing,including efficient single-strand annealing(SSA)for homologous recombination in STUSR-SSA systems.STU-SR-base editor systems leverage base editing to reinstate the start codon,enriching C-to-T and A-to-G base editing events.Our results showcase the effectiveness of these STU-SR systems in enhancing genome editing events in the monocot rice,encompassing Cas9 nuclease-based targeted mutagenesis,cytosine base editing,and adenine base editing.The systems exhibit compatibility with Cas9 variants,such as the PAM-less SpRY,and are shown to boost genome editing in Brassica oleracea,a dicot vegetable crop.In summary,we have developed highly efficient and versatile STU-SR systems for enrichment of genome-edited plants.展开更多
基金This work was funded by the National Key Research and Development Program of China(Grant No.2016YFA0500304to T.K.)the Science and Technology Program of Guangzhou,(Grant Nos.202002020092 and 201607020038 to T.K.)+2 种基金the National Nature Science Foundation in China(NSFC)(Grant Nos.81772922 to Y.W.,81702890 to X.W.,81530081,31571395 to T.K.)the Guangdong Natural Science Foundation Team Project(Grant No.2014A030312015 to T.K.)the Natural Science Foundation of Guangdong Province(Grant No.2016A030310218 to W.Y.).
文摘Objective:Osteosarcoma is the most common primary malignant bone tumor.However,the survival of patients with osteosarcoma has remained unchanged during the past 30 years,owing to a lack of efficient therapeutic targets.Methods:We constructed a kinome-targeting CRISPR-Cas9 library containing 507 kinases and 100 nontargeting controls and screened the potential kinase targets in osteosarcoma.The CRISPR screening sequencing data were analyzed with the Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout(MAGeCK)Python package.The functional data were applied in the 143B cell line through lenti-CRISPR-mediated gene knockout.The clinical significance of kinases in the survival of patients with osteosarcoma was analyzed in the R2:Genomics Analysis and Visualization Platform.Results:We identified 53 potential kinase targets in osteosarcoma.Among these targets,we analyzed 3 kinases,TRRAP,PKMYT1,and TP53RK,to validate their oncogenic functions in osteosarcoma.PKMYT1 and TP53RK showed higher expression in osteosarcoma than in normal bone tissue,whereas TRRAP showed no significant difference.High expression of all 3 kinases was associated with relatively poor prognosis in patients with osteosarcoma.Conclusions:Our results not only offer potential therapeutic kinase targets in osteosarcoma but also provide a paradigm for functional genetic screening by using a CRISPR-Cas9 library,including target design,library construction,screening workflow,data analysis,and functional validation.This method may also be useful in potentially accelerating drug discovery for other cancer types.
基金funded by the Genetically Modified Breeding Major Project(2016ZX08010-002-008)the National Natural Science Foundation of China(31701405)the Natural Science Foundation of Anhui Province,China(1708085QC60)。
文摘The efficiency of plant cytidine base-editing systems is limited, and unwanted mutations frequently occur in transgenic plants. We increased the cytidine editing frequency and fidelity of the plant base editor 3(BE3) and targeted activation-induced cytidine deaminase(CDA)(target-AID) systems by coexpressing three copies of free uracil–DNA glycosylase(UDG) inhibitor(UGI). The editing efficiency of the improved BE3 and CDA systems reached as high as 88.9% and 85.7%, respectively, in regenerated rice plants, with a very low frequency of unwanted mutations. The low editing frequency of the BE3 system in the GC context could be overcome by the modified CDA system. These results provide a highfidelity and high-efficiency solution for rice genomic base editing.
基金supported by the grants 81771230(W.C.),31922048(E.Z.)and 31522037(H.Y.)from the National Natural Science Foundation of China.
文摘CRISPR-mediated genome editing is a revolutionary technology for genome manipulation that uses the CRISPR-Cas systems and base editors.Currently,poor efficiency and off-target problems have impeded the application of CRISPR systems.The on-target efficiency has been improved in several advanced versions of CRISPR systems,whereas the off-target detection still remains a key challenge.Here,we outline the different versions of CRISPR systems and off-target detection strategies,discuss the merits and limitations of off-target detection methods,and provide potential implications for further gene editing research.
基金supported by the Investissement d’Avenir program of the French National Agency of Research for the project GENIUS(ANR-11-BTBR-0001_GENIUS)the Institut Carnot Plant2Pro program for the project POTATOCRISPsupported by the ANR project Immunereceptor(ANR-15-CE20-0007).
文摘Since its discovery as a bacterial adaptive immune system and its development for genome editing in eukaryotes,the CRISPR technology has revolutionized plant research and precision crop breeding.The CRISPR toolbox holds great promise in the production of crops with genetic disease resistance to increase agriculture resilience and reduce chemical crop protection with a strong impact on the environment and public health.In this review,we provide an extensive overviewon recent breakthroughs in CRISPR technology,including the newly developed prime editing system that allows precision gene editing in plants.We present how each CRISPR tool can be selected for optimal use in accordance with its specific strengths and limitations,and illustrate how the CRISPR toolbox can foster the development of genetically pathogen-resistant crops for sustainable agriculture.
基金supported by the National Key Research and Development Program of China(award no.2023YFD1202900)the National Science Foundation of China(award nos.32270433 and 32101205)+4 种基金the Natural Science Foundation of Sichuan Province(award no.2022NSFSC0143)to Y.Z.and X.T.,the Joint Science and Technology Project between Sichuan Province and Chongqing Municipality(award no.CSTC2021JSCXCYLHX0001)to H.S.and X.T.the Modern Seed Industry Project of Chongqing Municipal Science and Technology Bureau(award no.CSTB2023TIAD-KPX0025)to H.S.the National Science Foundation of China(award no.32301248)to Q.R.the National Science Foundation of China(award no.32072045)to X.Z.supported by the NSF Plant Genome Research Program(award nos.IOS-2029889 and IOS-2132693)to Y.Q.
文摘CRISPR-Cas-based genome editing holds immense promise for advancing plant genomics and crop enhancement.However,the challenge of low editing activity complicates the identification of editing events.In this study,we introduce multiple single transcript unit surrogate reporter(STU-SR)systems to enhance the selection of genome-edited plants.These systems use the same single guide RNAs designed for endogenous genes to edit reporter genes,establishing a direct link between reporter gene editing activity and that of endogenous genes.Various strategies are used to restore functional reporter genes after genome editing,including efficient single-strand annealing(SSA)for homologous recombination in STUSR-SSA systems.STU-SR-base editor systems leverage base editing to reinstate the start codon,enriching C-to-T and A-to-G base editing events.Our results showcase the effectiveness of these STU-SR systems in enhancing genome editing events in the monocot rice,encompassing Cas9 nuclease-based targeted mutagenesis,cytosine base editing,and adenine base editing.The systems exhibit compatibility with Cas9 variants,such as the PAM-less SpRY,and are shown to boost genome editing in Brassica oleracea,a dicot vegetable crop.In summary,we have developed highly efficient and versatile STU-SR systems for enrichment of genome-edited plants.