The saddle point equation of Ginzburg-Landau Hamiltonian for the diluted Ising model is developed. The ground state is solved numerically in two dimensions. The result is partly explained by the coarse-grained approxi...The saddle point equation of Ginzburg-Landau Hamiltonian for the diluted Ising model is developed. The ground state is solved numerically in two dimensions. The result is partly explained by the coarse-grained approximation.展开更多
We numerically investigate the quenched random directed sandpile models which are local, conservative and Abelian. A local flow balance between the outflow of grains during a single toppling at a site and the total nu...We numerically investigate the quenched random directed sandpile models which are local, conservative and Abelian. A local flow balance between the outflow of grains during a single toppling at a site and the total number of grains flowing into the same site plays an important role when all the nearest-neighbouring sites of the above-mentioned site topple for once. The quenched model has the same critical exponents with the Abelian deterministic directed sandpile model when the local flow balance exists, otherwise the critical exponents of this quenched model and the annealed Abelian random directed sandpile model are the same. These results indicate that the presence or absence of this local flow balance determines the universality class of the Abelian directed sandpile model.展开更多
文摘The saddle point equation of Ginzburg-Landau Hamiltonian for the diluted Ising model is developed. The ground state is solved numerically in two dimensions. The result is partly explained by the coarse-grained approximation.
文摘We numerically investigate the quenched random directed sandpile models which are local, conservative and Abelian. A local flow balance between the outflow of grains during a single toppling at a site and the total number of grains flowing into the same site plays an important role when all the nearest-neighbouring sites of the above-mentioned site topple for once. The quenched model has the same critical exponents with the Abelian deterministic directed sandpile model when the local flow balance exists, otherwise the critical exponents of this quenched model and the annealed Abelian random directed sandpile model are the same. These results indicate that the presence or absence of this local flow balance determines the universality class of the Abelian directed sandpile model.