期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Homologous and Heterologous Adaptation of Listeria spp.to Essential Oils of Condiment Plants
1
作者 Jéssica M.P.Santos Michelle C.Goncalves +3 位作者 Heloisa A.Martins Juliana J.Pinelli Silas R.Isidoro Roberta H.Piccoli 《Advances in Microbiology》 2018年第8期639-649,共11页
The homologous and heterologous adaptation capacity of L. monocytogenes and L. innocua were determined for thyme, oregano and nutmeg essential oils, as well as their adaptation capacities to acidic stress. Minimum bac... The homologous and heterologous adaptation capacity of L. monocytogenes and L. innocua were determined for thyme, oregano and nutmeg essential oils, as well as their adaptation capacities to acidic stress. Minimum bactericidal concentrations (CMB) and minimum inhibitory and minimum growth pH, were established. The capacity for increased tolerance to essential oils and acidic stress, along with heterologous adaptation among the essential oils tested and to acidic pH was determined, and that between pH and essential oils. L. monocytogenes and L. innocua adapted to all essential oils and to the minimum inhibitory pH, after exposition to sub-lethal conditions. Both strains presented heterologous adaptation capacity. After previous exposition to sub-lethal essential oil concentrations, the regenerated cells were capable of growth under 3.5 pH values, and increased CMB values. Essential oil CMBs for previously cultivated cells under minimum growth pH environments also increased, attaining values 1.6 times superior to previous ones. 展开更多
关键词 cross-adaptation Natural Antimicrobial L. monocytogenes Tolerance
下载PDF
Effects of Temperature Acclimation Pretreatment on the Ultrastructure of Mesophyll Cells in Young Grape Plants (Vitis vinifera L. cv. Jingxiu) Under Cross-Temperature Stresses 被引量:26
2
作者 Jun-Huan ZHANG Wei-Dong HUANG Yue-Ping LIU Qiu-Hong PAN 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第8期959-970,共12页
Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (H... Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using transmission electron microscopy. The results showed that slight injury appeared in the ultrastructure of mesophyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extreme temperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane permeability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhibited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly damaged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stroma lamellae was disordered, and no starch granules were present. The cristae of the mitochondria were disrupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested. In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chilling stress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplast became round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps. In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested and the cristae were disrupted and became many small vesicles. Compared with cellular organelles in control plants, those in CA plant cells always maintained an integrated state during whole heat stress, except for the chloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that the stability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreatment can protect chloroplasts, mitochondria, and the nucleus against subsequent heat stress; thus, the thermoresistance of grape seedlings was improved. The results obtained in the present study are the first, to our knowledge, to offered cytological evidence of cross-adaptation to temperature stresses in grape plants. 展开更多
关键词 chilling stress cold acclimation cross-adaptation grape (Vitis vinifera L. cv. Jingxiu) plants heat acclimation heat stress ultrastructure.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部