The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop directio...The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin.展开更多
The grain statistics effect was investigated through asymmetric rolling of pure copper foil by a realistic polycrystalline aggregates model and crystal plasticity element finite model.A polycrystalline aggregate model...The grain statistics effect was investigated through asymmetric rolling of pure copper foil by a realistic polycrystalline aggregates model and crystal plasticity element finite model.A polycrystalline aggregate model was generated and a crystal plasticity-based finite element model was developed for each grain and the specimen as a whole.The crystal plasticity model itself is rate dependent and accounts for local dissipative hardening effects and the original orientation of each grain was generated based on the orientation distribution function(ODF).The deformation behaviors,including inhomogeneous material flow,decrease of contact press and roll force with the increase of grain size for the constant size of specimens,were studied.It is revealed that when the specimens are composed of only a few grains across thickness,the grains with different sizes,shapes and orientations are unevenly distributed in the specimen and each grain plays a significant role in micro-scale plastic deformation and leads to inhomogeneous deformation and the scatter of experimental and simulation results.The slip system activity was examined and the predicted results are consistent with the surface layer model.The slip band is strictly influenced by the misorientation of neighbor grain with consideration of slip system activity.Furthermore,it is found that the decrease of roll force and the most active of slip system in surface grains are caused by the increase of free surface grain effect when the grain size is increased.The results of the physical experiment and simulation provide a basic understanding of micro-scaled plastic deformation behavior in asymmetric foil rolling.展开更多
An explicit polycrystal plasticity model was proposed to investigate the deformation mechanism of cold ring rolling in view of texture evolution. The model was created by deducing a set of linear incremental controlli...An explicit polycrystal plasticity model was proposed to investigate the deformation mechanism of cold ring rolling in view of texture evolution. The model was created by deducing a set of linear incremental controlling equations within the framework of crystal plasticity theory. It was directly solved by a linear algorithm within a two-level procedure so that its efficiency and stability were guaranteed. A subroutine VUMAT for ABAQUS/Explicit was developed to combine this model with the 3D FE model of cold ring rolling. Results indicate that the model is reliable in predictions of stress-strain response and texture evolution in the dynamic complicated forming process; the shear strain in RD of the ring is the critical deformation mode according to the sharp Goss component ({110}?100?) of deformed ring; texture and crystallographic structure of the ring blank do not affect texture type of the deformed ring;texture evolves rapidly at the later stage of rolling, which results in a dramatically increasing deformation of the ring.展开更多
A non-local dislocation density based crystal plasticity model, which takes account of the microstrncture inhomogeneity, was used to investigate the micro-bending of metallic crystalline foils. In this model, both sta...A non-local dislocation density based crystal plasticity model, which takes account of the microstrncture inhomogeneity, was used to investigate the micro-bending of metallic crystalline foils. In this model, both statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) are taken as the internal state variables. The strain gradient hardening in micro-bending of single-grained metal foils was predicted by evolution of GNDs. The predicted results were compared with the micro-hardness distribution of the previous micro-bending experiments of CuZn37 a-brass foils with coarse grains and fine grains. Comparison of the simulated dislocation densities distribution of SSDs and GNDs with the experimental results shows that different micro-hardness distribution patterns of the coarse and fine grain foils can be attributed to the corresponding SSDs and GNDs distributions. The present model provides a physical insight into the deformation mechanism and dislocation densities evolution of the micro-bending process.展开更多
To analyze the effect of single grain deformation behaviors on microforming process, a crystal plasticity model was developed considering grains at free surface layer as single grains. Based on the rate-dependent crys...To analyze the effect of single grain deformation behaviors on microforming process, a crystal plasticity model was developed considering grains at free surface layer as single grains. Based on the rate-dependent crystal plasticity theory, the analysis of the scale effect mechanism on upsetting deformation of micro rods was performed with respect to specimen dimension, original grain orientation and its distribution. The results show that flow stress decreases significantly with the scaling down of the specimen. The distribution of the grain orientation has an evident effect on flow stress of the micro specimen, and the effect becomes smaller with the progress of plastic deformation. For the anisotropy of single grains, inhomogeneous deformation occurs at the surface layer, which leads to the increase of surface roughness, especially for small specimens. The effect of grain anisotropy on the surface topography can be decreased by the transition grains. The simulation results are validated by upsetting deformation experiments. This indicates that the developed model is suitable for the analysis of microforming processes with characteristics, such as scale dependency, scatter of flow stress and inhomogeneous deformation.展开更多
Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain r...Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.展开更多
Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis ba...Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis based on the obtained orientation data.Stress and strain distributions of the deformed NiTi SMA samples confirm that there exhibits a heterogeneous plastic deformation at grain scale.Statistically stored dislocation(SSD)density and geometrically necessary dislocation(GND)density were further used in order to illuminate the microstructure evolution during uniaxial compression.SSD is responsible for sustaining plastic deformation and it increases along with the increase of plastic strain.GND plays an important role in accommodating compatible deformation between individual grains and thus it is correlated with the misorientation between neighboring grains,namely,a high GND density corresponds to large misorientation between grains and a low GND density corresponds to small misorientation between grains.展开更多
A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium a...A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium alloy under high cyclic loading.Results show that geometrically necessary dislocations(GND)tend to accumulate around the microvoids,leading to an increment of average GND density.The influence of curvature in the tip plastic zone(TPZ)on GND density is greater than that of the size of the microvoid.As the curvature in TPZ and the size of the microvoid increase,the cumulative shear strain(CSS)in the primaryα,secondaryα,andβphases increases.Shear deformation in the prismatic slip system is dominant in the primaryαphase.As the distance between the microvoids increases,the interactive influence of the microvoids on the cumulative shear strain decreases.展开更多
A three dimensional rate-dependent crystal plasticity model is applied to study the influence of crystal orientation and grain boundary on the void growth and coalescence. The 3D computational model is a unit cell inc...A three dimensional rate-dependent crystal plasticity model is applied to study the influence of crystal orientation and grain boundary on the void growth and coalescence. The 3D computational model is a unit cell including one sphere void or two sphere voids. The results of three different orientations for single crystal and bicrystals are compared. It is found that crystallographic orientation has noticeable influences on the void growth directionvoid shape, and void coalescence of single crystal. The void growth rate of bicrystals depends on the crystallographic orientations and grain boundary direction.展开更多
A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is perfo...A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is performed to calculate dislocation density and stored deformation energy distribution during the plastic deformation. A modified phase field(PF) model is then established by extending the continuum field method to consider both stored energy and local interface curvature as driving forces of grain boundary migration. An interpolation mapping approach is adopted to transfer the stored energy distribution from CPFE to PF efficiently. This modified PF model is implemented to a hypothetical bicrystal firstly for verification and then the coupled CPFE-PF framework is further applied to simulating the 2D synthetic polycrystalline microstructure evolution in annealing process of deformed AA3102 aluminum alloy.Results show that the nuclei with low stored energy embedded within deformed matrix tend to grow up, and abnormal large grains occur when the deformation is close to the critical plastic strain, attributing to the limited number of recrystallized nuclei and inhomogeneity of the stored energy.展开更多
An explicit integration scheme for rate-dependent crystal plasticity (CP) was developed. Additive decomposition of the velocity gradient tensor into lattice and plastic parts is adopted for describing the kinematics...An explicit integration scheme for rate-dependent crystal plasticity (CP) was developed. Additive decomposition of the velocity gradient tensor into lattice and plastic parts is adopted for describing the kinematics; the Cauchy stress is calculated by using a hypo-elastic formulation, applying the Jaumann stress rate. This CP scheme has been implemented into a commercial finite element code (CPFEM). Uniaxial compression and roiling processes were simulated. The results show good accuracy and reliability of the integration scheme. The results were compared with simulations using one hyper-elastic CPFEM implementation which involves multiplicative decomposition of the deformation gradient tensor. It is found that the hypo-elastic implementation is only slightly faster and has a similar accuracy as the hyper-elastic formulation.展开更多
This work presents a method to incorporate the micro Hall-Petch equation into the crystal plasticity finite element(CPFE) framework accounting for the microstructural features to understand the coupling between grain ...This work presents a method to incorporate the micro Hall-Petch equation into the crystal plasticity finite element(CPFE) framework accounting for the microstructural features to understand the coupling between grain size, texture, and loading direction in magnesium alloys.The effect of grain size and texture is accounted for by modifying the slip resistances of individual basal and prismatic systems based on the micro Hall-Petch equation. The modification based on the micro Hall-Petch equation endows every slip system at each microstructural point with a slip system-level grain size and maximum compatibility factor, which are in turn used to modify the slip resistance. While the slip-system level grain size is a measure of the grain size, the maximum compatibility factor encodes the effect of the grain boundary on the slip system resistance modification and is computed based on the Luster-Morris factor. The model is calibrated using experimental stress-strain curves of Mg-4Al samples with three different grain sizes from which the Hall-Petch coefficients are extracted and compared with Hall-Petch coefficients predicted using original parameters from previous work. The predictability of the model is then evaluated for a Mg-4Al sample with different texture and three grain sizes subjected to loading in different directions. The calibrated parameters are then used for some parametric studies to investigate the variation of Hall-Petch slope for different degrees of simulated spread in basal texture,variation of Hall-Petch slope with loading direction relative to basal poles for a microstructure with strong basal texture, and variation of yield strength with change in grain morphology. The proposed approach to incorporate the micro Hall-Petch equation into the CPFE framework provides a foundation to quantitatively model more complicated scenarios of coupling between grain size, texture and loading direction in the plasticity of Mg alloys.展开更多
The microstructure of crystal defects,e.g.,dislocation patterns,are not arbitrary,and it is possible that some of them may be related to the microstructure of crystals itself,i.e.,the lattice structure.We call those d...The microstructure of crystal defects,e.g.,dislocation patterns,are not arbitrary,and it is possible that some of them may be related to the microstructure of crystals itself,i.e.,the lattice structure.We call those dislocation patterns or substructures that are related to the corresponding crystal microstructure as the Geometrically Compatible Dislocation Patterns(GCDP).Based on this notion,we have developed a Multiscale Crystal Defect Dynamics(MCDD)to model crystal plasticity without or with minimum empiricism.In this work,we employ the multiscale dislocation pattern dynamics,i.e.,MCDD,to simulate crystal plasticity in body-centered cubic(BCC)single crystals,mainlyα-phase Tantalum(α-Ta)single crystals.The main novelties of the work are:(1)We have successfully simulated crystal plasticity at micron scale without any empirical parameter inputs;(2)We have successfully employed MCDD to perform direct numerical simulation of inelastic hysteresis of the BCC crystal;(3)We have used MCDD crystal plasticity model to demonstrate the size-effect of crystal plasticity and(4)We have captured cross-slip which may lead to size-effect.展开更多
The dislocation density tensor computed as the cud of plastic distortion is regarded as a new constitutive variable in crystal plasticity. The dependence of the free energy function on the dislocation density tensor i...The dislocation density tensor computed as the cud of plastic distortion is regarded as a new constitutive variable in crystal plasticity. The dependence of the free energy function on the dislocation density tensor is explored starting from a quadratic ansatz. Rank one and logarithmic dependencies are then envisaged based on considerations from the statistical theory of dislocations. The rele- vance of the presented free energy potentials is evaluated from the corresponding analytical solutions of the periodic two-phase laminate problem under shear where one layer is a single crystal material undergoing single slip and the second one remains purely elastic.展开更多
Present work focuses on analysis of the stress and strain fields inside and around the individual {10–12} twin in magnesium alloy. The 3D crystal plasticity model represents twin as an ellipsoidal inclusion surrounde...Present work focuses on analysis of the stress and strain fields inside and around the individual {10–12} twin in magnesium alloy. The 3D crystal plasticity model represents twin as an ellipsoidal inclusion surrounded by the matrix. Five different twin thicknesses and three different lateral twin lengths are used for stress/strain analysis. The simulations are complemented with experimental observations using high-resolution electron backscattered diffraction. The simulations and experiments show a similar distribution of the shear stress and the spatial activity of individual slip systems(basal, prismatic, pyramidal). Plasticity induced inside the twin is dominantly caused by the prismatic dislocations slip and does not influence twin back stress which is identical to pure elastic twin. The twin with larger lateral dimension requires lower equilibrium stress which suggests anisotropic twin propagation and increased thickness of such twins. The lateral twin propagation is mostly influenced by prismatic and pyramidal slip in the twin vicinity. The twin thickness can reach a maximal level that is driven by the critical resolved shear stress values for dislocation slip with the significant influence of basal slip.展开更多
The crystal plasticity finite element method(CPFEM)is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level.However,few CPFEM simulation st...The crystal plasticity finite element method(CPFEM)is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level.However,few CPFEM simulation studies have been carried out to analyze the nanoindentation deformation mechanism of polycrystalline materials at the microscale level.In this study,a three-dimensional CPFEM-based nanoindentation simulation is performed on an Inconel 718 polycrystalline material to examine the influence of different crystallographic parameters on nanoindentation behavior.A representative volume element model is developed to calibrate the crystal plastic constitutive parameters by comparing the stress-strain data with the experimental results.The indentation force-displacement curves,stress distributions,and pile-up patterns are obtained by CPFEM simulation.The results show that the crystallographic orientation and grain boundary have little influence on the force-displacement curves of the nanoindentation,but significantly influence the local stress distributions and shape of the pile-up patterns.As the difference in crystallographic orientation between grains increases,changes in the pile-up patterns and stress distributions caused by this effect become more significant.In addition,the simulation results reveal that the existence of grain boundaries affects the continuity of the stress distribution.The obstruction on the continuity of stress distribution increases as the grain boundary angle increases.This research demonstrates that the proposed CPFEM model can well describe the microscopic compressive deformation behaviors of Inconel 718 under nanoindentation.展开更多
A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self...A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.展开更多
The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers iso...The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pro- nounced strain gradients occur in the grain boundary region even under homo- geneous loading. The isotropic hardening of strain gradients strongly influences the global stress-strain diagram while the kinematic hardening of strain gradi- ents influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.展开更多
With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element c...With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finite element modeling, based on the rate dependent crystal constitutive equations. Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the develop- ment of rolling texture of interstitial-free steel (IF steel) at various reductions. The modeled results show a good agreement with the experimental results. With increasing reduction, the predicted and experimental rolling textures tend to sharper, and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.'Conclusions are obtained that rolling textures calculated with 48 { 110} 〈 111 〉+ { 112 } 〈 111〉+ { 123 } 〈 111 〉 slip systems are more approximate to EBSD results.展开更多
Using dislocation-based constitutive modeling in three-dimension crystal plasticity finite element(3D CPFE)simulations,co-deformation and instability of hetero-phase interface in different material systems were herein...Using dislocation-based constitutive modeling in three-dimension crystal plasticity finite element(3D CPFE)simulations,co-deformation and instability of hetero-phase interface in different material systems were herein studied for polycrystalline metal matrix composites(MMCs).Local stress and strain fields in two types of 3layer MMCs such as fcc/fcc Cu-Ag and fcc/bcc Cu-Nb have been predicted under simple compressive deformations.Accordingly,more severe strain-induced interface instability can be observed in the fcc/bcc systems than in the fcc/fcc systems upon refining to metallic nanolayered composites(MNCs).By detailed analysis of stress and strain localization,it has been demonstrated that the interface instability is always accompanied by high-stress concentration,i.e.,thermodynamic characteristics,or high strain prevention i.e.,kinetic characteristics,at the hetero-phase interface.It then follows that the thermodynamic driving forceG and the kinetic energy barrier Q during dislocation and shear banding can be adopted to classify the deformation modes,following the so-called thermo-kinetic correlation.Then by inserting a high density of high-energy interfaces into the Cu-Nb composites,such thermo-kinetic integration at the hetero-phase interface allows a successful establishment of MMCs with the high△G-high Q deformation mode,which ensures high hardening and uniform strain distri-bution,thus efficiently suppressing the shear band,stabilizing the hetero-phase interface,and obtaining an exceptional combination in strength and ductility.Such hetero-phase interface chosen by a couple of thermodynamics and kinetics can be defined as breaking the thermo-kinetic correlation and has been proposed for artificially designing MNCs.展开更多
基金supports from the National Research Foundation of Korea funded by the Ministry of Education (No. 2018R1A6A1A03024509, NRF-2023R1A2C1005121)
文摘The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin.
基金Project(51374069)supported by the National Natural Science Foundation of ChinaProject(U1460107)supported by the Joint Fund of the National Natural Science Foundation of China
文摘The grain statistics effect was investigated through asymmetric rolling of pure copper foil by a realistic polycrystalline aggregates model and crystal plasticity element finite model.A polycrystalline aggregate model was generated and a crystal plasticity-based finite element model was developed for each grain and the specimen as a whole.The crystal plasticity model itself is rate dependent and accounts for local dissipative hardening effects and the original orientation of each grain was generated based on the orientation distribution function(ODF).The deformation behaviors,including inhomogeneous material flow,decrease of contact press and roll force with the increase of grain size for the constant size of specimens,were studied.It is revealed that when the specimens are composed of only a few grains across thickness,the grains with different sizes,shapes and orientations are unevenly distributed in the specimen and each grain plays a significant role in micro-scale plastic deformation and leads to inhomogeneous deformation and the scatter of experimental and simulation results.The slip system activity was examined and the predicted results are consistent with the surface layer model.The slip band is strictly influenced by the misorientation of neighbor grain with consideration of slip system activity.Furthermore,it is found that the decrease of roll force and the most active of slip system in surface grains are caused by the increase of free surface grain effect when the grain size is increased.The results of the physical experiment and simulation provide a basic understanding of micro-scaled plastic deformation behavior in asymmetric foil rolling.
基金Project (51175428) supported by the National Natural Science Foundation of ChinaProject (B08040) supported by Program of Introducing Talents of Discipline to Universities ("111"Project),China
文摘An explicit polycrystal plasticity model was proposed to investigate the deformation mechanism of cold ring rolling in view of texture evolution. The model was created by deducing a set of linear incremental controlling equations within the framework of crystal plasticity theory. It was directly solved by a linear algorithm within a two-level procedure so that its efficiency and stability were guaranteed. A subroutine VUMAT for ABAQUS/Explicit was developed to combine this model with the 3D FE model of cold ring rolling. Results indicate that the model is reliable in predictions of stress-strain response and texture evolution in the dynamic complicated forming process; the shear strain in RD of the ring is the critical deformation mode according to the sharp Goss component ({110}?100?) of deformed ring; texture and crystallographic structure of the ring blank do not affect texture type of the deformed ring;texture evolves rapidly at the later stage of rolling, which results in a dramatically increasing deformation of the ring.
基金Projects(50835002,50821003,50975174,51275297)supported by the National Natural Science Foundation of ChinaProjects(200802480053,20100073110044)supported by the PhD Programs Foundation of Ministry of Education of China
文摘A non-local dislocation density based crystal plasticity model, which takes account of the microstrncture inhomogeneity, was used to investigate the micro-bending of metallic crystalline foils. In this model, both statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) are taken as the internal state variables. The strain gradient hardening in micro-bending of single-grained metal foils was predicted by evolution of GNDs. The predicted results were compared with the micro-hardness distribution of the previous micro-bending experiments of CuZn37 a-brass foils with coarse grains and fine grains. Comparison of the simulated dislocation densities distribution of SSDs and GNDs with the experimental results shows that different micro-hardness distribution patterns of the coarse and fine grain foils can be attributed to the corresponding SSDs and GNDs distributions. The present model provides a physical insight into the deformation mechanism and dislocation densities evolution of the micro-bending process.
基金Project (50835002) supported by the National Natural Science Foundation of ChinaProject (QC08C55) supported by the Natural Science Foundation of Heilongjiang Province, China Project (200802131031) supported by the PhD. Programs Foundation of Ministry of Education of China for Young Scholars
文摘To analyze the effect of single grain deformation behaviors on microforming process, a crystal plasticity model was developed considering grains at free surface layer as single grains. Based on the rate-dependent crystal plasticity theory, the analysis of the scale effect mechanism on upsetting deformation of micro rods was performed with respect to specimen dimension, original grain orientation and its distribution. The results show that flow stress decreases significantly with the scaling down of the specimen. The distribution of the grain orientation has an evident effect on flow stress of the micro specimen, and the effect becomes smaller with the progress of plastic deformation. For the anisotropy of single grains, inhomogeneous deformation occurs at the surface layer, which leads to the increase of surface roughness, especially for small specimens. The effect of grain anisotropy on the surface topography can be decreased by the transition grains. The simulation results are validated by upsetting deformation experiments. This indicates that the developed model is suitable for the analysis of microforming processes with characteristics, such as scale dependency, scatter of flow stress and inhomogeneous deformation.
基金Projects(50871040,51271204) supported by the National Natural Science Foundation of ChinaProject(2012CB619500) supported by the National Basic Research Program of ChinaProject(NCET-06-0741) supported by the Program for New Century Excellent Talents, China
文摘Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.
基金Projects(51475101,51305091,51305092)supported by the National Natural Science Foundation of China
文摘Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis based on the obtained orientation data.Stress and strain distributions of the deformed NiTi SMA samples confirm that there exhibits a heterogeneous plastic deformation at grain scale.Statistically stored dislocation(SSD)density and geometrically necessary dislocation(GND)density were further used in order to illuminate the microstructure evolution during uniaxial compression.SSD is responsible for sustaining plastic deformation and it increases along with the increase of plastic strain.GND plays an important role in accommodating compatible deformation between individual grains and thus it is correlated with the misorientation between neighboring grains,namely,a high GND density corresponds to large misorientation between grains and a low GND density corresponds to small misorientation between grains.
基金the National Key Research and Development Program of China(No.2021YFB3702603).
文摘A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium alloy under high cyclic loading.Results show that geometrically necessary dislocations(GND)tend to accumulate around the microvoids,leading to an increment of average GND density.The influence of curvature in the tip plastic zone(TPZ)on GND density is greater than that of the size of the microvoid.As the curvature in TPZ and the size of the microvoid increase,the cumulative shear strain(CSS)in the primaryα,secondaryα,andβphases increases.Shear deformation in the prismatic slip system is dominant in the primaryαphase.As the distance between the microvoids increases,the interactive influence of the microvoids on the cumulative shear strain decreases.
基金supported by National Natural Science Foundation of China(No.50575143)the Research Fund for the Doctoral Program of Higher Educa-tion (No.20040248005)
文摘A three dimensional rate-dependent crystal plasticity model is applied to study the influence of crystal orientation and grain boundary on the void growth and coalescence. The 3D computational model is a unit cell including one sphere void or two sphere voids. The results of three different orientations for single crystal and bicrystals are compared. It is found that crystallographic orientation has noticeable influences on the void growth directionvoid shape, and void coalescence of single crystal. The void growth rate of bicrystals depends on the crystallographic orientations and grain boundary direction.
基金the financial support from the National Natural Science Foundation of China (Nos. U2141215, 52105384 and 52075325)the support of Materials Genome Initiative Center, Shanghai Jiao Tong University, China。
文摘A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is performed to calculate dislocation density and stored deformation energy distribution during the plastic deformation. A modified phase field(PF) model is then established by extending the continuum field method to consider both stored energy and local interface curvature as driving forces of grain boundary migration. An interpolation mapping approach is adopted to transfer the stored energy distribution from CPFE to PF efficiently. This modified PF model is implemented to a hypothetical bicrystal firstly for verification and then the coupled CPFE-PF framework is further applied to simulating the 2D synthetic polycrystalline microstructure evolution in annealing process of deformed AA3102 aluminum alloy.Results show that the nuclei with low stored energy embedded within deformed matrix tend to grow up, and abnormal large grains occur when the deformation is close to the critical plastic strain, attributing to the limited number of recrystallized nuclei and inhomogeneity of the stored energy.
文摘An explicit integration scheme for rate-dependent crystal plasticity (CP) was developed. Additive decomposition of the velocity gradient tensor into lattice and plastic parts is adopted for describing the kinematics; the Cauchy stress is calculated by using a hypo-elastic formulation, applying the Jaumann stress rate. This CP scheme has been implemented into a commercial finite element code (CPFEM). Uniaxial compression and roiling processes were simulated. The results show good accuracy and reliability of the integration scheme. The results were compared with simulations using one hyper-elastic CPFEM implementation which involves multiplicative decomposition of the deformation gradient tensor. It is found that the hypo-elastic implementation is only slightly faster and has a similar accuracy as the hyper-elastic formulation.
基金supported by the U.S.Department of Energy,Office of Basic Energy Sciences,Division of Materials Sciences and Engineering under Award #DE-SC0008637 as part of the Center for PRedictive Integrated Materials Science (PRISMS Center) at the University of Michigansupported by National Science Foundation grant number ACI1548562,through the allocation TG-MSS160003。
文摘This work presents a method to incorporate the micro Hall-Petch equation into the crystal plasticity finite element(CPFE) framework accounting for the microstructural features to understand the coupling between grain size, texture, and loading direction in magnesium alloys.The effect of grain size and texture is accounted for by modifying the slip resistances of individual basal and prismatic systems based on the micro Hall-Petch equation. The modification based on the micro Hall-Petch equation endows every slip system at each microstructural point with a slip system-level grain size and maximum compatibility factor, which are in turn used to modify the slip resistance. While the slip-system level grain size is a measure of the grain size, the maximum compatibility factor encodes the effect of the grain boundary on the slip system resistance modification and is computed based on the Luster-Morris factor. The model is calibrated using experimental stress-strain curves of Mg-4Al samples with three different grain sizes from which the Hall-Petch coefficients are extracted and compared with Hall-Petch coefficients predicted using original parameters from previous work. The predictability of the model is then evaluated for a Mg-4Al sample with different texture and three grain sizes subjected to loading in different directions. The calibrated parameters are then used for some parametric studies to investigate the variation of Hall-Petch slope for different degrees of simulated spread in basal texture,variation of Hall-Petch slope with loading direction relative to basal poles for a microstructure with strong basal texture, and variation of yield strength with change in grain morphology. The proposed approach to incorporate the micro Hall-Petch equation into the CPFE framework provides a foundation to quantitatively model more complicated scenarios of coupling between grain size, texture and loading direction in the plasticity of Mg alloys.
文摘The microstructure of crystal defects,e.g.,dislocation patterns,are not arbitrary,and it is possible that some of them may be related to the microstructure of crystals itself,i.e.,the lattice structure.We call those dislocation patterns or substructures that are related to the corresponding crystal microstructure as the Geometrically Compatible Dislocation Patterns(GCDP).Based on this notion,we have developed a Multiscale Crystal Defect Dynamics(MCDD)to model crystal plasticity without or with minimum empiricism.In this work,we employ the multiscale dislocation pattern dynamics,i.e.,MCDD,to simulate crystal plasticity in body-centered cubic(BCC)single crystals,mainlyα-phase Tantalum(α-Ta)single crystals.The main novelties of the work are:(1)We have successfully simulated crystal plasticity at micron scale without any empirical parameter inputs;(2)We have successfully employed MCDD to perform direct numerical simulation of inelastic hysteresis of the BCC crystal;(3)We have used MCDD crystal plasticity model to demonstrate the size-effect of crystal plasticity and(4)We have captured cross-slip which may lead to size-effect.
基金Dr. F.Latourte (EDF Research and Development Division,Les Renardières,Moret-sur-Loing,France) and Dr. J.M.Proix (EDF Research and Development Division,Clamart,France),and the MAI-SN (EDF,Les Renardières,Moret-sur-Loing,France) for stimulating discussions and financial support for part of this study
文摘The dislocation density tensor computed as the cud of plastic distortion is regarded as a new constitutive variable in crystal plasticity. The dependence of the free energy function on the dislocation density tensor is explored starting from a quadratic ansatz. Rank one and logarithmic dependencies are then envisaged based on considerations from the statistical theory of dislocations. The rele- vance of the presented free energy potentials is evaluated from the corresponding analytical solutions of the periodic two-phase laminate problem under shear where one layer is a single crystal material undergoing single slip and the second one remains purely elastic.
基金supported by the Czech Science Foundation via the project 18-07140Sfinancial support by Thermo Fisher Scientific and Czech-Slovak Microscopy Society in the scope of the grant program for young researchers。
文摘Present work focuses on analysis of the stress and strain fields inside and around the individual {10–12} twin in magnesium alloy. The 3D crystal plasticity model represents twin as an ellipsoidal inclusion surrounded by the matrix. Five different twin thicknesses and three different lateral twin lengths are used for stress/strain analysis. The simulations are complemented with experimental observations using high-resolution electron backscattered diffraction. The simulations and experiments show a similar distribution of the shear stress and the spatial activity of individual slip systems(basal, prismatic, pyramidal). Plasticity induced inside the twin is dominantly caused by the prismatic dislocations slip and does not influence twin back stress which is identical to pure elastic twin. The twin with larger lateral dimension requires lower equilibrium stress which suggests anisotropic twin propagation and increased thickness of such twins. The lateral twin propagation is mostly influenced by prismatic and pyramidal slip in the twin vicinity. The twin thickness can reach a maximal level that is driven by the critical resolved shear stress values for dislocation slip with the significant influence of basal slip.
基金Supported by National Natural Science Foundation of China(Grant Nos.52130511,52075174).
文摘The crystal plasticity finite element method(CPFEM)is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level.However,few CPFEM simulation studies have been carried out to analyze the nanoindentation deformation mechanism of polycrystalline materials at the microscale level.In this study,a three-dimensional CPFEM-based nanoindentation simulation is performed on an Inconel 718 polycrystalline material to examine the influence of different crystallographic parameters on nanoindentation behavior.A representative volume element model is developed to calibrate the crystal plastic constitutive parameters by comparing the stress-strain data with the experimental results.The indentation force-displacement curves,stress distributions,and pile-up patterns are obtained by CPFEM simulation.The results show that the crystallographic orientation and grain boundary have little influence on the force-displacement curves of the nanoindentation,but significantly influence the local stress distributions and shape of the pile-up patterns.As the difference in crystallographic orientation between grains increases,changes in the pile-up patterns and stress distributions caused by this effect become more significant.In addition,the simulation results reveal that the existence of grain boundaries affects the continuity of the stress distribution.The obstruction on the continuity of stress distribution increases as the grain boundary angle increases.This research demonstrates that the proposed CPFEM model can well describe the microscopic compressive deformation behaviors of Inconel 718 under nanoindentation.
基金the supports by the Fundamental Research Program of the Korea Institute of Materials Science(KIMS,PNK7760)。
文摘A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.
文摘The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investi- gated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pro- nounced strain gradients occur in the grain boundary region even under homo- geneous loading. The isotropic hardening of strain gradients strongly influences the global stress-strain diagram while the kinematic hardening of strain gradi- ents influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.
文摘With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finite element modeling, based on the rate dependent crystal constitutive equations. Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the develop- ment of rolling texture of interstitial-free steel (IF steel) at various reductions. The modeled results show a good agreement with the experimental results. With increasing reduction, the predicted and experimental rolling textures tend to sharper, and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.'Conclusions are obtained that rolling textures calculated with 48 { 110} 〈 111 〉+ { 112 } 〈 111〉+ { 123 } 〈 111 〉 slip systems are more approximate to EBSD results.
基金support of the National Natural Science Foundation of China(No.52130110 and 51901182)the Research Fund of the State Key Laboratory of Solidification Process-ing(No.2022-TS-01).
文摘Using dislocation-based constitutive modeling in three-dimension crystal plasticity finite element(3D CPFE)simulations,co-deformation and instability of hetero-phase interface in different material systems were herein studied for polycrystalline metal matrix composites(MMCs).Local stress and strain fields in two types of 3layer MMCs such as fcc/fcc Cu-Ag and fcc/bcc Cu-Nb have been predicted under simple compressive deformations.Accordingly,more severe strain-induced interface instability can be observed in the fcc/bcc systems than in the fcc/fcc systems upon refining to metallic nanolayered composites(MNCs).By detailed analysis of stress and strain localization,it has been demonstrated that the interface instability is always accompanied by high-stress concentration,i.e.,thermodynamic characteristics,or high strain prevention i.e.,kinetic characteristics,at the hetero-phase interface.It then follows that the thermodynamic driving forceG and the kinetic energy barrier Q during dislocation and shear banding can be adopted to classify the deformation modes,following the so-called thermo-kinetic correlation.Then by inserting a high density of high-energy interfaces into the Cu-Nb composites,such thermo-kinetic integration at the hetero-phase interface allows a successful establishment of MMCs with the high△G-high Q deformation mode,which ensures high hardening and uniform strain distri-bution,thus efficiently suppressing the shear band,stabilizing the hetero-phase interface,and obtaining an exceptional combination in strength and ductility.Such hetero-phase interface chosen by a couple of thermodynamics and kinetics can be defined as breaking the thermo-kinetic correlation and has been proposed for artificially designing MNCs.