Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose...BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.展开更多
Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity...Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients.展开更多
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig...Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future.展开更多
Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsi...Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN.展开更多
Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and...Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and connection mechanisms of attraction networks is important for understanding the linkages between attractions and even the future destination planning.This paper uses geotagging data to compare the links between attractions in Beijing,China during four different periods:the pre-Olympic period(2004–2007),the Olympic Games and subsequent‘heat period’(2008–2013),the post-Olympic period(2014–2019),and the COVID-19(Corona Virus Disease 2019)pandemic period(2020–2021).The aim is to better understand the evolution and patterns of attraction networks at different scales in Beijing and to provide insights for tourism planning in the destination.The results show that the macro,meso-,and microscales network characteristics of attraction networks have inherent logical relationships that can explain the commonalities and differences in the development process of tourism networks.The macroscale attraction network degree Matthew effect is significant in the four different periods and exhibits a morphological monocentric structure,suggesting that new entrants are more likely to be associated with attractions that already have high value.The mesoscale links attractions according to the common purpose of tourists,and the results of the community segmentation of the attraction networks in the four different periods suggest that the functional polycentric structure describes their clustering effect,and the weak links between clusters result from attractions bound by incomplete information and distance,and the functional polycentric structure with a generally more efficient network of clusters.The pattern structure at the microscale reveals the topological transformation relationship of the regional collaboration pattern,and the attraction network structure in the four different periods has a very similar importance profile structure suggesting that the attraction network has the same construction rules and evolution mechanism,which aids in understanding the attraction network pattern at both macro and micro scales.Important approaches and practical implications for planners and managers are presented.展开更多
The theory of network science has attracted great interest of many researchers in the realm of biomathematics and public health,and numerous valuable epidemic models have been developed.In previous studies,it is commo...The theory of network science has attracted great interest of many researchers in the realm of biomathematics and public health,and numerous valuable epidemic models have been developed.In previous studies,it is common to set up a one-to-one correspondence between the nodes of a multi-layer network,ignoring the more complex situations in reality.In the present work,we explore this situation by setting up a partially coupled model of a two-layer network and investigating the impact of asymptomatic infected individuals on epidemics.We propose a self-discovery mechanism for asymptomatic infected individuals,taking into account situations such as nucleic acid testing in the community and individuals performing self-antigen testing during the epidemic.Considering these factors together,through the microscopic Markov chain approach(MMCA)and extensive Monte Carlo(MC)numerical simulations,we find that the greater the coupling between the networks,the more information dissemination is facilitated.In order to control the epidemics,more asymptomatic infected individuals should be made aware of their infection.Massive adoption of nucleic acid testing and individual adoption of antigenic self-testing can help to contain epidemic outbreaks.Meanwhile,the epidemic threshold of the proposed model is derived,and then miscellaneous factors affecting the epidemic threshold are also discussed.Current results are conducive to devising the prevention and control policies of pandemics.展开更多
Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep lea...Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs.展开更多
The breakage of brittle particulate materials into smaller particles under compressive or impact loads can be modelled as an instantiation of the population balance integro-differential equation.In this paper,the emer...The breakage of brittle particulate materials into smaller particles under compressive or impact loads can be modelled as an instantiation of the population balance integro-differential equation.In this paper,the emerging computational science paradigm of physics-informed neural networks is studied for the first time for solving both linear and nonlinear variants of the governing dynamics.Unlike conventional methods,the proposed neural network provides rapid simulations of arbitrarily high resolution in particle size,predicting values on arbitrarily fine grids without the need for model retraining.The network is assigned a simple multi-head architecture tailored to uphold monotonicity of the modelled cumulative distribution function over particle sizes.The method is theoretically analyzed and validated against analytical results before being applied to real-world data of a batch grinding mill.The agreement between laboratory data and numerical simulation encourages the use of physics-informed neural nets for optimal planning and control of industrial comminution processes.展开更多
Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the los...Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the loss function.The performance of PINNs is generally affected by both training and sampling.Specifically,training methods focus on how to overcome the training difficulties caused by the special PDE residual loss of PINNs,and sampling methods are concerned with the location and distribution of the sampling points upon which evaluations of PDE residual loss are accomplished.However,a common problem among these original PINNs is that they omit special temporal information utilization during the training or sampling stages when dealing with an important PDE category,namely,time-dependent PDEs,where temporal information plays a key role in the algorithms used.There is one method,called Causal PINN,that considers temporal causality at the training level but not special temporal utilization at the sampling level.Incorporating temporal knowledge into sampling remains to be studied.To fill this gap,we propose a novel temporal causality-based adaptive sampling method that dynamically determines the sampling ratio according to both PDE residual and temporal causality.By designing a sampling ratio determined by both residual loss and temporal causality to control the number and location of sampled points in each temporal sub-domain,we provide a practical solution by incorporating temporal information into sampling.Numerical experiments of several nonlinear time-dependent PDEs,including the Cahn–Hilliard,Korteweg–de Vries,Allen–Cahn and wave equations,show that our proposed sampling method can improve the performance.We demonstrate that using such a relatively simple sampling method can improve prediction performance by up to two orders of magnitude compared with the results from other methods,especially when points are limited.展开更多
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp...A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and ba...In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.展开更多
The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surfa...The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem.展开更多
Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and har...Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ...Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.展开更多
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ...A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field.展开更多
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav...The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.展开更多
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金Supported by National Key Technology Research and Developmental Program of China,No.2022YFC2704400 and No.2022YFC2704405.
文摘BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.
基金supported by the National Natural Science Foundation of China(31970116,72274192)。
文摘Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients.
文摘Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future.
基金the National Natural Science Foundation of China(No.52274048)Beijing Natural Science Foundation(No.3222037)+1 种基金the CNPC 14th Five-Year Perspective Fundamental Research Project(No.2021DJ2104)the Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ010).
文摘Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN.
基金Under the auspices of the National Natural Science Foundation of China(No.41971202)the National Natural Science Foundation of China(No.42201181)the Fundamental research funding targets for central universities(No.2412022QD002)。
文摘Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and connection mechanisms of attraction networks is important for understanding the linkages between attractions and even the future destination planning.This paper uses geotagging data to compare the links between attractions in Beijing,China during four different periods:the pre-Olympic period(2004–2007),the Olympic Games and subsequent‘heat period’(2008–2013),the post-Olympic period(2014–2019),and the COVID-19(Corona Virus Disease 2019)pandemic period(2020–2021).The aim is to better understand the evolution and patterns of attraction networks at different scales in Beijing and to provide insights for tourism planning in the destination.The results show that the macro,meso-,and microscales network characteristics of attraction networks have inherent logical relationships that can explain the commonalities and differences in the development process of tourism networks.The macroscale attraction network degree Matthew effect is significant in the four different periods and exhibits a morphological monocentric structure,suggesting that new entrants are more likely to be associated with attractions that already have high value.The mesoscale links attractions according to the common purpose of tourists,and the results of the community segmentation of the attraction networks in the four different periods suggest that the functional polycentric structure describes their clustering effect,and the weak links between clusters result from attractions bound by incomplete information and distance,and the functional polycentric structure with a generally more efficient network of clusters.The pattern structure at the microscale reveals the topological transformation relationship of the regional collaboration pattern,and the attraction network structure in the four different periods has a very similar importance profile structure suggesting that the attraction network has the same construction rules and evolution mechanism,which aids in understanding the attraction network pattern at both macro and micro scales.Important approaches and practical implications for planners and managers are presented.
基金supported by the National Natural Science Foundation of China(Grant No.62173247).
文摘The theory of network science has attracted great interest of many researchers in the realm of biomathematics and public health,and numerous valuable epidemic models have been developed.In previous studies,it is common to set up a one-to-one correspondence between the nodes of a multi-layer network,ignoring the more complex situations in reality.In the present work,we explore this situation by setting up a partially coupled model of a two-layer network and investigating the impact of asymptomatic infected individuals on epidemics.We propose a self-discovery mechanism for asymptomatic infected individuals,taking into account situations such as nucleic acid testing in the community and individuals performing self-antigen testing during the epidemic.Considering these factors together,through the microscopic Markov chain approach(MMCA)and extensive Monte Carlo(MC)numerical simulations,we find that the greater the coupling between the networks,the more information dissemination is facilitated.In order to control the epidemics,more asymptomatic infected individuals should be made aware of their infection.Massive adoption of nucleic acid testing and individual adoption of antigenic self-testing can help to contain epidemic outbreaks.Meanwhile,the epidemic threshold of the proposed model is derived,and then miscellaneous factors affecting the epidemic threshold are also discussed.Current results are conducive to devising the prevention and control policies of pandemics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094).
文摘Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs.
基金supported in part by the Ramanujan Fellowship from the Science and Engineering Research Board,Government of India(Grant No.RJF/2022/000115)。
文摘The breakage of brittle particulate materials into smaller particles under compressive or impact loads can be modelled as an instantiation of the population balance integro-differential equation.In this paper,the emerging computational science paradigm of physics-informed neural networks is studied for the first time for solving both linear and nonlinear variants of the governing dynamics.Unlike conventional methods,the proposed neural network provides rapid simulations of arbitrarily high resolution in particle size,predicting values on arbitrarily fine grids without the need for model retraining.The network is assigned a simple multi-head architecture tailored to uphold monotonicity of the modelled cumulative distribution function over particle sizes.The method is theoretically analyzed and validated against analytical results before being applied to real-world data of a batch grinding mill.The agreement between laboratory data and numerical simulation encourages the use of physics-informed neural nets for optimal planning and control of industrial comminution processes.
基金Project supported by the Key National Natural Science Foundation of China(Grant No.62136005)the National Natural Science Foundation of China(Grant Nos.61922087,61906201,and 62006238)。
文摘Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the loss function.The performance of PINNs is generally affected by both training and sampling.Specifically,training methods focus on how to overcome the training difficulties caused by the special PDE residual loss of PINNs,and sampling methods are concerned with the location and distribution of the sampling points upon which evaluations of PDE residual loss are accomplished.However,a common problem among these original PINNs is that they omit special temporal information utilization during the training or sampling stages when dealing with an important PDE category,namely,time-dependent PDEs,where temporal information plays a key role in the algorithms used.There is one method,called Causal PINN,that considers temporal causality at the training level but not special temporal utilization at the sampling level.Incorporating temporal knowledge into sampling remains to be studied.To fill this gap,we propose a novel temporal causality-based adaptive sampling method that dynamically determines the sampling ratio according to both PDE residual and temporal causality.By designing a sampling ratio determined by both residual loss and temporal causality to control the number and location of sampled points in each temporal sub-domain,we provide a practical solution by incorporating temporal information into sampling.Numerical experiments of several nonlinear time-dependent PDEs,including the Cahn–Hilliard,Korteweg–de Vries,Allen–Cahn and wave equations,show that our proposed sampling method can improve the performance.We demonstrate that using such a relatively simple sampling method can improve prediction performance by up to two orders of magnitude compared with the results from other methods,especially when points are limited.
基金Project supported by the National Natural Science Foundation of China Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the National Natural Science Foundation of China(No.12202451)。
文摘A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.
基金funding this work through Small Research Project under grant number RGP.1/141/45。
文摘The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem.
基金supported by the National Natural Science Foundation of China(No.61772386)National Key Research and Development Project(No.2018YFB1305001)Fundamental Research Funds for the Central Universities(No.KJ02072021-0119).
文摘Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.
基金supported by the National Natural Science Foundation of China(32001733)the Earmarked fund for CARS(CARS-47)+3 种基金Guangxi Natural Science Foundation Program(2021GXNSFAA196023)Guangdong Basic and Applied Basic Research Foundation(2021A1515010833)Young Talent Support Project of Guangzhou Association for Science and Technology(QT20220101142)the Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences(2020TD69)。
文摘Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.
文摘A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field.
文摘The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.