The physics package of a chip-scale atomic clock (CSAC) has been successfully realized by integrating vertical cavity surface emitting laser (VCSEL), neutral density (ND) filter, λ/4 wave plate, 87Rb vapor cell...The physics package of a chip-scale atomic clock (CSAC) has been successfully realized by integrating vertical cavity surface emitting laser (VCSEL), neutral density (ND) filter, λ/4 wave plate, 87Rb vapor cell, photodiode (PD), and magnetic coil into a cuboid metal package with a volume of about 2.8 cm3. In this physics package, the critical component, 87Rb vapor cell, is batch-fabricated based on MEMS technology and in-situ chemical reaction method. Pt heater and thermistors are integrated in the physics package. A PTFE pillar is used to support the optical elements in the physics package, in order to reduce the power dissipation. The optical absorption spectrum of 87Rb D1 line and the microwave frequency correction signal are successfully observed while connecting the package with the servo circuit system. Using the above mentioned packaging solution, a CSAC with short-term frequency stability of about 7 × 10^-10τ-1/2 has been successfully achieved, which demonstrates that this physics package would become one promising solution for the CSAC.展开更多
Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity...Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity,and low carbon emissions.The production and hydration of CSAC(containing ye’elimite,belite,calcium sulfate,and minors)have been extensively studied,but aspects of its durability are not well understood.Due to its composition and intrinsic characteristics,CSAC concrete is expected to have better performance than Portland cement(PC)concrete in several aspects,including shrinkage and cracking due to restrained shrinkage,freeze-thaw damage,alkali-silica reaction,and sulfate attack.However,there is a lack of consensus among researchers regarding transport properties,resistance to carbonation,and steel corrosion protectiveness of CSAC concrete,all of which are expected to be tied to the chemical composition of CSAC and attributes of the service environments.For example,CASC concrete has poorer resistance to carbonation and chloride penetration compared with its PC counterpart,yet some studies have suggested that it protects steel rebar well from corrosion when exposed to a marine tidal zone,because of a strong self-desiccation effect.This paper presents a succinct review of studies of the durability of CSAC concrete.We suggest that more such studies should be conducted to examine the long-term performance of the material in different service environments.Special emphasis should be given to carbonation and steel rebar corrosion,so as to reveal the underlying deterioration mechanisms and establish means to improve the performance of CSAC concrete against such degradation processes.展开更多
基金supported by the Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.KGCX2-YW-143)
文摘The physics package of a chip-scale atomic clock (CSAC) has been successfully realized by integrating vertical cavity surface emitting laser (VCSEL), neutral density (ND) filter, λ/4 wave plate, 87Rb vapor cell, photodiode (PD), and magnetic coil into a cuboid metal package with a volume of about 2.8 cm3. In this physics package, the critical component, 87Rb vapor cell, is batch-fabricated based on MEMS technology and in-situ chemical reaction method. Pt heater and thermistors are integrated in the physics package. A PTFE pillar is used to support the optical elements in the physics package, in order to reduce the power dissipation. The optical absorption spectrum of 87Rb D1 line and the microwave frequency correction signal are successfully observed while connecting the package with the servo circuit system. Using the above mentioned packaging solution, a CSAC with short-term frequency stability of about 7 × 10^-10τ-1/2 has been successfully achieved, which demonstrates that this physics package would become one promising solution for the CSAC.
基金the National Science Foundation of the United States(Nos.1932690 and 1761697)。
文摘Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity,and low carbon emissions.The production and hydration of CSAC(containing ye’elimite,belite,calcium sulfate,and minors)have been extensively studied,but aspects of its durability are not well understood.Due to its composition and intrinsic characteristics,CSAC concrete is expected to have better performance than Portland cement(PC)concrete in several aspects,including shrinkage and cracking due to restrained shrinkage,freeze-thaw damage,alkali-silica reaction,and sulfate attack.However,there is a lack of consensus among researchers regarding transport properties,resistance to carbonation,and steel corrosion protectiveness of CSAC concrete,all of which are expected to be tied to the chemical composition of CSAC and attributes of the service environments.For example,CASC concrete has poorer resistance to carbonation and chloride penetration compared with its PC counterpart,yet some studies have suggested that it protects steel rebar well from corrosion when exposed to a marine tidal zone,because of a strong self-desiccation effect.This paper presents a succinct review of studies of the durability of CSAC concrete.We suggest that more such studies should be conducted to examine the long-term performance of the material in different service environments.Special emphasis should be given to carbonation and steel rebar corrosion,so as to reveal the underlying deterioration mechanisms and establish means to improve the performance of CSAC concrete against such degradation processes.