针对传统人体动作识别中的硬件成本高和隐私泄露等问题,本文提出了一种基于三维卷积神经网络(3DCNN)和Wi-Fi信道状态信息(Channel State Information,CSI)的人体动作识别方法。首先,从采集到的信号中提取原始CSI数据的幅值和相位;其次,...针对传统人体动作识别中的硬件成本高和隐私泄露等问题,本文提出了一种基于三维卷积神经网络(3DCNN)和Wi-Fi信道状态信息(Channel State Information,CSI)的人体动作识别方法。首先,从采集到的信号中提取原始CSI数据的幅值和相位;其次,进行异常点去除和滤波去噪,通过应用CSI幅度与相位的结合以及滑动方差进行人体动作切割,得到处理后的CSI数据;然后,在此基础上使用3DCNN神经网络提取CSI数据的时间和空间特征,并通过引入注意力机制进一步提升人体动作识别的准确度;最后,在实验室采集的CSI数据集上进行了人体动作识别的实验验证,其准确率达到96.1%。展开更多
船舶驾驶台人员包括按照规定要求的常规值班人员和特殊情况下额外的瞭望人员或船长、引航员等,驾驶台人员活跃度是判断其工作状态的重要指标之一。传统的基于计算机视觉的人员检测方法在面对船舶驾驶台遮挡物多、夜间或恶劣天气下光线...船舶驾驶台人员包括按照规定要求的常规值班人员和特殊情况下额外的瞭望人员或船长、引航员等,驾驶台人员活跃度是判断其工作状态的重要指标之一。传统的基于计算机视觉的人员检测方法在面对船舶驾驶台遮挡物多、夜间或恶劣天气下光线不足等问题时,精度明显降低。为解决该问题,提出了1种基于普通商用Wi-Fi设备的活跃度感知方法。由于船体材质、结构特点以及变化的运动状态导致动态多径多、信号噪声强,对Wi-Fi设备造成干扰,为此设计了值班高关联度数据(duty high correlation data,DHCD)选择模块及基于信道状态信息(channel state information,CSI)的多层级特征提取模块。DHCD选择模块分析驾驶台人员不同航行、值班情况下的CSI特点,对比0~5人在驾驶台内值班、工作时的信道变化,利用模糊C-means聚类算法提取CSI中对值班人员行为反应最灵敏的信道,去除对信号噪声反应敏感的信道信息;通过多层级特征提取模块计算去噪后CSI数据的幅值与相位离散度、多链路融合离散度、变异指数等多层特征,作为活跃度评价基础参数。依据驾驶台值班要求设计了驾驶台人员活跃度评价模块,采用支持向量机算法判断驾驶台人员数量,采用客观赋权法得到基础参数权重,结合人数信息与权重信息评价驾驶台人员活跃度。实验结果表明:使用DHCD选择模块和多层级模块处理后的多层级特征将驾驶台人员数量检测精度提升至89.6%,对比直接使用原始数据时检测精度提升7.1%。在夜间、雨雾天气等光照不足情况下,基于计算机视觉方法的检测精度会由光线充足时的96.2%降至60.3%,而该方法监测精度不会降低。因此,基于CSI的驾驶台人员活跃度检测方法丰富了驾驶台人员检测算法,能有效识别船舶驾驶台人员是否符合安全值班的基本要求。展开更多
利用Wi-Fi信号中信道状态信息(Channel State Information,CSI)的变化特征可实现被动行为检测.通过预选择出CSI数据中性能优良的子载波和对环境区分度更好的MIMO天线对,实现对数据的深度预处理,以及在提取到幅值和相位差特征后,经过小...利用Wi-Fi信号中信道状态信息(Channel State Information,CSI)的变化特征可实现被动行为检测.通过预选择出CSI数据中性能优良的子载波和对环境区分度更好的MIMO天线对,实现对数据的深度预处理,以及在提取到幅值和相位差特征后,经过小波变换得到更细粒度特征的数据后处理算法,提高行为的识别率.实验结果表明,该算法在150组测试数据集上的分类准确率高达97.1%,比在同等条件下未经过预处理和后处理算法的分类准确率高约6.6%.展开更多
文摘针对传统人体动作识别中的硬件成本高和隐私泄露等问题,本文提出了一种基于三维卷积神经网络(3DCNN)和Wi-Fi信道状态信息(Channel State Information,CSI)的人体动作识别方法。首先,从采集到的信号中提取原始CSI数据的幅值和相位;其次,进行异常点去除和滤波去噪,通过应用CSI幅度与相位的结合以及滑动方差进行人体动作切割,得到处理后的CSI数据;然后,在此基础上使用3DCNN神经网络提取CSI数据的时间和空间特征,并通过引入注意力机制进一步提升人体动作识别的准确度;最后,在实验室采集的CSI数据集上进行了人体动作识别的实验验证,其准确率达到96.1%。
文摘船舶驾驶台人员包括按照规定要求的常规值班人员和特殊情况下额外的瞭望人员或船长、引航员等,驾驶台人员活跃度是判断其工作状态的重要指标之一。传统的基于计算机视觉的人员检测方法在面对船舶驾驶台遮挡物多、夜间或恶劣天气下光线不足等问题时,精度明显降低。为解决该问题,提出了1种基于普通商用Wi-Fi设备的活跃度感知方法。由于船体材质、结构特点以及变化的运动状态导致动态多径多、信号噪声强,对Wi-Fi设备造成干扰,为此设计了值班高关联度数据(duty high correlation data,DHCD)选择模块及基于信道状态信息(channel state information,CSI)的多层级特征提取模块。DHCD选择模块分析驾驶台人员不同航行、值班情况下的CSI特点,对比0~5人在驾驶台内值班、工作时的信道变化,利用模糊C-means聚类算法提取CSI中对值班人员行为反应最灵敏的信道,去除对信号噪声反应敏感的信道信息;通过多层级特征提取模块计算去噪后CSI数据的幅值与相位离散度、多链路融合离散度、变异指数等多层特征,作为活跃度评价基础参数。依据驾驶台值班要求设计了驾驶台人员活跃度评价模块,采用支持向量机算法判断驾驶台人员数量,采用客观赋权法得到基础参数权重,结合人数信息与权重信息评价驾驶台人员活跃度。实验结果表明:使用DHCD选择模块和多层级模块处理后的多层级特征将驾驶台人员数量检测精度提升至89.6%,对比直接使用原始数据时检测精度提升7.1%。在夜间、雨雾天气等光照不足情况下,基于计算机视觉方法的检测精度会由光线充足时的96.2%降至60.3%,而该方法监测精度不会降低。因此,基于CSI的驾驶台人员活跃度检测方法丰富了驾驶台人员检测算法,能有效识别船舶驾驶台人员是否符合安全值班的基本要求。
文摘利用Wi-Fi信号中信道状态信息(Channel State Information,CSI)的变化特征可实现被动行为检测.通过预选择出CSI数据中性能优良的子载波和对环境区分度更好的MIMO天线对,实现对数据的深度预处理,以及在提取到幅值和相位差特征后,经过小波变换得到更细粒度特征的数据后处理算法,提高行为的识别率.实验结果表明,该算法在150组测试数据集上的分类准确率高达97.1%,比在同等条件下未经过预处理和后处理算法的分类准确率高约6.6%.