The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th...The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.展开更多
针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统...针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统基于CSI幅值的指纹定位基础上增加相位信息对定位结果进行修正,之后对RSSI指纹和PC-CSI指纹的定位结果加权重定位。实验结果表明,提出的加权融合指纹定位算法与基于CSI的主动定位算法相比,平均定位误差(mean position error,MPE)降低了36.2%,能满足室内定位需求。展开更多
In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem i...In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.展开更多
Due to the fine-grained communication scenarios characterization and stability,Wi-Fi channel state information(CSI)has been increasingly applied to indoor sensing tasks recently.Although spatial variations are explici...Due to the fine-grained communication scenarios characterization and stability,Wi-Fi channel state information(CSI)has been increasingly applied to indoor sensing tasks recently.Although spatial variations are explicitlyreflected in CSI measurements,the representation differences caused by small contextual changes are easilysubmerged in the fluctuations of multipath effects,especially in device-free Wi-Fi sensing.Most existing datasolutions cannot fully exploit the temporal,spatial,and frequency information carried by CSI,which results ininsufficient sensing resolution for indoor scenario changes.As a result,the well-liked machine learning(ML)-based CSI sensing models still struggling with stable performance.This paper formulates a time-frequency matrixon the premise of demonstrating that the CSI has low-rank potential and then proposes a distributed factorizationalgorithm to effectively separate the stable structured information and context fluctuations in the CSI matrix.Finally,a multidimensional tensor is generated by combining the time-frequency gradients of CSI,which containsrich and fine-grained real-time contextual information.Extensive evaluations and case studies highlight thesuperiority of the proposal.展开更多
Against the backdrop of rapid development in China’s construction and infrastructure sectors,discrepancies between project budgets and actual costs have become pronounced,manifesting in project overruns and suspensio...Against the backdrop of rapid development in China’s construction and infrastructure sectors,discrepancies between project budgets and actual costs have become pronounced,manifesting in project overruns and suspensions,posing significant challenges.To address inaccuracies in investment targets and operational complexities,this study focuses on a beam-bridge construction project in a district of Shijiazhuang city as a case study.Drawing upon historical analogs,the project employs a Work Breakdown Structure(WBS)to decompose the engineering works.Building on theories of Cost Significant(CS)and Whole Life Costing(WLC),the study constructs Cost Significant Items(CSIs)and develops a CNN-BiLSTM-Attention neural network for nonlinear prediction.By identifying significant cost drivers in engineering projects,this paper presents a streamlined cost estimation method that significantly reduces computational burdens,simplifies data collection processes,and optimizes data analysis and forecasting,thereby enhancing prediction accuracy.Finally,validation with real-world cost fluctuation data demonstrates minor errors,meeting predictive requirements across project execution phases.展开更多
碘化铯(CsI)光阴极响应灵敏度是软X射线条纹相机用于X射线能谱定量诊断的重要参数,其理论计算具有重要指导意义.目前的理论解析模型基于薄膜光阴极产生次级电子的一维随机行走模型发展而来,具体包括X射线正入射、能量大于1 ke V条件下的...碘化铯(CsI)光阴极响应灵敏度是软X射线条纹相机用于X射线能谱定量诊断的重要参数,其理论计算具有重要指导意义.目前的理论解析模型基于薄膜光阴极产生次级电子的一维随机行走模型发展而来,具体包括X射线正入射、能量大于1 ke V条件下的Henke模型,以及变角度入射、光阴极厚度大于100 nm条件下的Fraser模型,都存在一定局限性.本文进一步引入次级电子输运概率的基础表达式,推导了CsI光阴极在更大参数范围内(X射线能量0.1—10 ke V、光阴极厚度10—200 nm)响应灵敏度随X射线能量E、光阴极厚度t、X射线与阴极表面夹角θ变化的一般表达式.最后,将本文的理论计算结果与Henke模型、Fraser模型、文献及北京同步辐射的实验数据分别进行了比较和讨论分析,验证了计算模型的准确性和普适性,并且为高时间分辨光谱定量测量实验中Cs I光阴极的优化设计提供了理论参考.展开更多
In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of ...In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants 61941104,61921004the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108+1 种基金the Southeast University-China Mobile Research Institute Joint Innovation Centersupported in part by the Scientific Research Foundation of Graduate School of Southeast University under Grant YBPY2118.
文摘The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.
文摘针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统基于CSI幅值的指纹定位基础上增加相位信息对定位结果进行修正,之后对RSSI指纹和PC-CSI指纹的定位结果加权重定位。实验结果表明,提出的加权融合指纹定位算法与基于CSI的主动定位算法相比,平均定位误差(mean position error,MPE)降低了36.2%,能满足室内定位需求。
基金supported by the Fundamental Research Funds for the Central Universities of NUAA(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China(No.BK20181289).
文摘In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.
基金the National Natural Science Foundation of China under Grant 61771258 and Grant U1804142the Key Science and Technology Project of Henan Province under Grants 202102210280,212102210159,222102210192,232102210051the Key Scientific Research Projects of Colleges and Universities in Henan Province under Grant 20B460008.
文摘Due to the fine-grained communication scenarios characterization and stability,Wi-Fi channel state information(CSI)has been increasingly applied to indoor sensing tasks recently.Although spatial variations are explicitlyreflected in CSI measurements,the representation differences caused by small contextual changes are easilysubmerged in the fluctuations of multipath effects,especially in device-free Wi-Fi sensing.Most existing datasolutions cannot fully exploit the temporal,spatial,and frequency information carried by CSI,which results ininsufficient sensing resolution for indoor scenario changes.As a result,the well-liked machine learning(ML)-based CSI sensing models still struggling with stable performance.This paper formulates a time-frequency matrixon the premise of demonstrating that the CSI has low-rank potential and then proposes a distributed factorizationalgorithm to effectively separate the stable structured information and context fluctuations in the CSI matrix.Finally,a multidimensional tensor is generated by combining the time-frequency gradients of CSI,which containsrich and fine-grained real-time contextual information.Extensive evaluations and case studies highlight thesuperiority of the proposal.
文摘Against the backdrop of rapid development in China’s construction and infrastructure sectors,discrepancies between project budgets and actual costs have become pronounced,manifesting in project overruns and suspensions,posing significant challenges.To address inaccuracies in investment targets and operational complexities,this study focuses on a beam-bridge construction project in a district of Shijiazhuang city as a case study.Drawing upon historical analogs,the project employs a Work Breakdown Structure(WBS)to decompose the engineering works.Building on theories of Cost Significant(CS)and Whole Life Costing(WLC),the study constructs Cost Significant Items(CSIs)and develops a CNN-BiLSTM-Attention neural network for nonlinear prediction.By identifying significant cost drivers in engineering projects,this paper presents a streamlined cost estimation method that significantly reduces computational burdens,simplifies data collection processes,and optimizes data analysis and forecasting,thereby enhancing prediction accuracy.Finally,validation with real-world cost fluctuation data demonstrates minor errors,meeting predictive requirements across project execution phases.
文摘碘化铯(CsI)光阴极响应灵敏度是软X射线条纹相机用于X射线能谱定量诊断的重要参数,其理论计算具有重要指导意义.目前的理论解析模型基于薄膜光阴极产生次级电子的一维随机行走模型发展而来,具体包括X射线正入射、能量大于1 ke V条件下的Henke模型,以及变角度入射、光阴极厚度大于100 nm条件下的Fraser模型,都存在一定局限性.本文进一步引入次级电子输运概率的基础表达式,推导了CsI光阴极在更大参数范围内(X射线能量0.1—10 ke V、光阴极厚度10—200 nm)响应灵敏度随X射线能量E、光阴极厚度t、X射线与阴极表面夹角θ变化的一般表达式.最后,将本文的理论计算结果与Henke模型、Fraser模型、文献及北京同步辐射的实验数据分别进行了比较和讨论分析,验证了计算模型的准确性和普适性,并且为高时间分辨光谱定量测量实验中Cs I光阴极的优化设计提供了理论参考.
基金financially supported by the Research Fund for the Visiting Scholar Program by the China Scholarship Council(Grant No.2011631504)the Fundamental Research Funds for the Central Universities(Grant No.201112G020)+1 种基金the National Natural Science Foundation of China(Grant No.41176032)China Scholarship Council
文摘In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.