The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear o...The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However, with the increasing improvement of actual prediction models, more and more physical processes are taken into consideration in models in the form of parameterization, thus giving rise to the on–off switch problem, which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad- joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named GA-CNOP, to solve the predictability problems involving on–off switches. As the precision of the filtering method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on–off switches, often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using GAs to solve predictability problems is more effective than using the conventional optimization algorithm based on gradients, as long as genetic operators in GAs are properly configured.展开更多
Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an...Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an antenna array composed of 9 antennas is applied to the detection. The double constrained robust capon beamforming (DCRCB) algorithm is used for reconstructing the breast image due to its better stability and high signal-to-interference-plus-noise ratio (SINR). The successful detection of a tumor of 2 mm in diameter shown in the reconstruction demonstrates the robustness of the DCRCB beamforming algorithm. This study verifies the feasibility of detecting small breast tumors by using the DCRCB imaging algorithm.展开更多
Based on the work of paper [1], we propose a modified Levenberg-Marquardt algoithm for solving singular system of nonlinear equations F(x) = 0, where F(x) : Rn - Rn is continuously differentiable and F'(x) is Lips...Based on the work of paper [1], we propose a modified Levenberg-Marquardt algoithm for solving singular system of nonlinear equations F(x) = 0, where F(x) : Rn - Rn is continuously differentiable and F'(x) is Lipschitz continuous. The algorithm is equivalent to a trust region algorithm in some sense, and the global convergence result is given. The sequence generated by the algorithm converges to the solution quadratically, if ||F(x)||2 provides a local error bound for the system of nonlinear equations. Numerical results show that the algorithm performs well.展开更多
Web service choreography describes global mod- els of service interactions among a set of participants. For an interaction to be executed, the participants must know the required channel(s) used in the interaction, ...Web service choreography describes global mod- els of service interactions among a set of participants. For an interaction to be executed, the participants must know the required channel(s) used in the interaction, otherwise the ex- ecution will get stuck. Since channels are composed dynami- cally, the initial channel set of each participant is often insuf- ficient to meet the requirements. It is the responsibility of the participants to pass required channels owned (known) by one to others. Since service choreography may involve many par- ticipants and complex channel constraints, it is hard for de- signers to specify channel passing in a choreography exactly as required. We address the problem of checking whether a service choreography lacks channels or has redundant chan- nels, and how to automatically generate channel passing based on interaction flows of the service choreography in the case of channel absence. Concretely, we propose a sim- ple language Chorc, a channel interaction sub-language for modeling the channel passing aspect of service choreography. Based on the formal operational semantics of Chore, the algo- rithms for static checking of service choreography and gen- erating channel passing are also studied, and the complexity results of algorithms are discussed. Moreover, some illus- trated service choreography examples are presented to show how to formalize and analyze service choreography with channel passing in Chorc.展开更多
基金supported bythe National Natural Science Foundation of China(Grant Nos40975063 and 40830955)
文摘The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However, with the increasing improvement of actual prediction models, more and more physical processes are taken into consideration in models in the form of parameterization, thus giving rise to the on–off switch problem, which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad- joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named GA-CNOP, to solve the predictability problems involving on–off switches. As the precision of the filtering method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on–off switches, often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using GAs to solve predictability problems is more effective than using the conventional optimization algorithm based on gradients, as long as genetic operators in GAs are properly configured.
基金supported by the National Natural Science Foundation of China (Grant No. 61271323)the Open Project from State Key Laboratory of Millimeter Waves, China (Grant No. K200913)
文摘Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an antenna array composed of 9 antennas is applied to the detection. The double constrained robust capon beamforming (DCRCB) algorithm is used for reconstructing the breast image due to its better stability and high signal-to-interference-plus-noise ratio (SINR). The successful detection of a tumor of 2 mm in diameter shown in the reconstruction demonstrates the robustness of the DCRCB beamforming algorithm. This study verifies the feasibility of detecting small breast tumors by using the DCRCB imaging algorithm.
文摘Based on the work of paper [1], we propose a modified Levenberg-Marquardt algoithm for solving singular system of nonlinear equations F(x) = 0, where F(x) : Rn - Rn is continuously differentiable and F'(x) is Lipschitz continuous. The algorithm is equivalent to a trust region algorithm in some sense, and the global convergence result is given. The sequence generated by the algorithm converges to the solution quadratically, if ||F(x)||2 provides a local error bound for the system of nonlinear equations. Numerical results show that the algorithm performs well.
文摘Web service choreography describes global mod- els of service interactions among a set of participants. For an interaction to be executed, the participants must know the required channel(s) used in the interaction, otherwise the ex- ecution will get stuck. Since channels are composed dynami- cally, the initial channel set of each participant is often insuf- ficient to meet the requirements. It is the responsibility of the participants to pass required channels owned (known) by one to others. Since service choreography may involve many par- ticipants and complex channel constraints, it is hard for de- signers to specify channel passing in a choreography exactly as required. We address the problem of checking whether a service choreography lacks channels or has redundant chan- nels, and how to automatically generate channel passing based on interaction flows of the service choreography in the case of channel absence. Concretely, we propose a sim- ple language Chorc, a channel interaction sub-language for modeling the channel passing aspect of service choreography. Based on the formal operational semantics of Chore, the algo- rithms for static checking of service choreography and gen- erating channel passing are also studied, and the complexity results of algorithms are discussed. Moreover, some illus- trated service choreography examples are presented to show how to formalize and analyze service choreography with channel passing in Chorc.