期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的行人检测方法 被引量:3
1
作者 叶正喆 苍岩 《应用科技》 CAS 2022年第2期55-62,共8页
针对行人检测算法未能充分利用行人的特征信息,导致对行人的检测效果不佳问题,本文对无锚框的行人检测网络模型CSP进行了相应改进,提出了一种基于卷积神经网络的行人检测算法。首先,将原主干网络由ResNet-50加深为ResNet-101,然后引入... 针对行人检测算法未能充分利用行人的特征信息,导致对行人的检测效果不佳问题,本文对无锚框的行人检测网络模型CSP进行了相应改进,提出了一种基于卷积神经网络的行人检测算法。首先,将原主干网络由ResNet-50加深为ResNet-101,然后引入卷积块注意力模块(CBAM)来提高原网络对小尺度行人中心点的特征表达,加入基于分数融合公式的分类器模块来进一步提高被遮挡行人的置信度,最终得到AS-CSP算法。该算法可以进一步提高对小尺度行人以及遮挡行人的检测效果。实验采用的数据集是CityPersons数据集,并在通用行人、小尺度行人以及遮挡行人等不同场景下进行对比实验,验证新算法的有效性。实验结果表明,本文提出的AS-CSP算法在通用行人、小尺度行人以及遮挡行人场景上的检测效果相比于原算法都得到了提升。 展开更多
关键词 行人检测 csp网络 卷积神经网络 ResNet-101网络 ResNet-50网络 卷积块注意力模块 分数融合 置信度
下载PDF
基于改进YOLOv3的加油站卸油检测方法 被引量:3
2
作者 刘均 杜雪瑞 《吉林大学学报(信息科学版)》 CAS 2022年第4期628-637,共10页
针对传统加油站生产环境下卸油作业检测效率低,违规操作引发的安全问题,提出一种基于改进YOLOv3的加油站卸油检测方法。该方法通过在Darknet-53主干输出后引入RFB(Receptive Field Block)感受野模块,使模型能选择合适的感受野对不同尺... 针对传统加油站生产环境下卸油作业检测效率低,违规操作引发的安全问题,提出一种基于改进YOLOv3的加油站卸油检测方法。该方法通过在Darknet-53主干输出后引入RFB(Receptive Field Block)感受野模块,使模型能选择合适的感受野对不同尺度目标进行匹配,提高检测精度;结合CSP(Cross Stage Partial)网络并提出RFB_CSP和RFBS_CSP两种结构,实现两条支路的跨级拼接与通道整合,降低计算成本;用K-means++算法对现场的9类目标重新聚类分析,确定合适的网络anchor参数。实验结果表明,优化后的模型对比原始的YOLOv3模型,其平均精度均值提高了2.3%和2.9%,说明优化后的YOLOv3模型在加油站场景检测具有较高的实用价值。 展开更多
关键词 加油站 YOLOv3模型 感受野模块 csp网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部