Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention t...Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention therapy. Methods: Eighteen patients with central lungcancer underwent MSCT with real time helical thin-slice CT scanning. Three-dimensional bronchialartery reconstruction was done at the console work-station. The space anatomical characters ofbronchial artery were observed through different rotations. Results: For 6 cases, thethree-dimensional images of bronchial artery (33.33%) could exactly show the origins, the routes(lung inner segment and mediatism segment) and the diameters of bronchial arteries. Vision rate ofbronchial arteries was the highest in pulmonary artery stricture and truncation groups, and thevessels' diameter became larger apparently. These characters demonstrated blood supply of this kindof central lung cancer come from bronchial artery. Volume rendering images were the best ones amongthree-dimensional images. Conclusion: Three-dimensional imaging with MSCT in bronchial artery canreveal the anatomical characters of bronchial artery and provide theoretical evidence on bloodsupply and intervention therapy of central lung cancer.展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method wit...A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.展开更多
The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual worklo...The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging(Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by ~1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions(Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent(Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve.展开更多
Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imagi...Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.展开更多
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop...In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.展开更多
In the current landscape of the COVID-19 pandemic,the utilization of deep learning in medical imaging,especially in chest computed tomography(CT)scan analysis for virus detection,has become increasingly significant.De...In the current landscape of the COVID-19 pandemic,the utilization of deep learning in medical imaging,especially in chest computed tomography(CT)scan analysis for virus detection,has become increasingly significant.Despite its potential,deep learning’s“black box”nature has been a major impediment to its broader acceptance in clinical environments,where transparency in decision-making is imperative.To bridge this gap,our research integrates Explainable AI(XAI)techniques,specifically the Local Interpretable Model-Agnostic Explanations(LIME)method,with advanced deep learning models.This integration forms a sophisticated and transparent framework for COVID-19 identification,enhancing the capability of standard Convolutional Neural Network(CNN)models through transfer learning and data augmentation.Our approach leverages the refined DenseNet201 architecture for superior feature extraction and employs data augmentation strategies to foster robust model generalization.The pivotal element of our methodology is the use of LIME,which demystifies the AI decision-making process,providing clinicians with clear,interpretable insights into the AI’s reasoning.This unique combination of an optimized Deep Neural Network(DNN)with LIME not only elevates the precision in detecting COVID-19 cases but also equips healthcare professionals with a deeper understanding of the diagnostic process.Our method,validated on the SARS-COV-2 CT-Scan dataset,demonstrates exceptional diagnostic accuracy,with performance metrics that reinforce its potential for seamless integration into modern healthcare systems.This innovative approach marks a significant advancement in creating explainable and trustworthy AI tools for medical decisionmaking in the ongoing battle against COVID-19.展开更多
BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby provi...BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.展开更多
The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory e...The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory experiments and numerical simulations.In this study,the computerized tomography (CT) scanning and photogrammetry were employed to obtain the internal and surface joint structures of a limestone sample,respectively.To describe the joint geometry,the edge detection algorithms and a three-dimensional (3D) matrix mapping method were applied to reconstruct CT-based and photogrammetry-based jointed rock models.For comparison tests,the numerical uniaxial compression tests were conducted on an intact rock sample and a sample with a joint simplified to a plane using the parallel computing method.The results indicate that the mechanical characteristics and failure process of jointed rocks are significantly affected by the geometry of joints.The presence of joints reduces the uniaxial compressive strength (UCS),elastic modulus,and released acoustic emission (AE) energy of rocks by 37%–67%,21%–24%,and 52%–90%,respectively.Compared to the simplified joint sample,the proposed photogrammetry-based numerical model makes the most of the limited geometry information of joints.The UCS,accumulative released AE energy,and elastic modulus of the photogrammetry-based sample were found to be very close to those of the CT-based sample.The UCS value of the simplified joint sample (i.e.38.5 MPa) is much lower than that of the CT-based sample (i.e.72.3 MPa).Additionally,the accumulative released AE energy observed in the simplified joint sample is 3.899 times lower than that observed in the CT-based sample.CT scanning provides a reliable means to visualize the joints in rocks,which can be used to verify the reliability of photogrammetry techniques.The application of the photogrammetry-based sample enables detailed analysis for estimating the mechanical properties of jointed rocks.展开更多
Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lu...Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .展开更多
Background:Completely endophytic renal tumors(CERT)pose significant challenges due to their anatomical complexity and loss of visual clues about tumor location.A facile scoring model based on three-dimensional(3D)reco...Background:Completely endophytic renal tumors(CERT)pose significant challenges due to their anatomical complexity and loss of visual clues about tumor location.A facile scoring model based on three-dimensional(3D)reconstructed images will assist in better assessing tumor location and vascular variations.Methods:In this retrospective study,80 patients diagnosed with CERT were included.Forty cases underwent preoperative assessment using 3D reconstructed imaging(3D-Cohort),while the remaining 40 cases were assessed using two-dimensional imaging(2D-Cohort).Vascular variations were evaluated by ascertaining the presence of renal arteries>1,prehilar branching arteries,and arteries anterior to veins.The proposed scoring system,termed RAL,encompassed three critical components:(R)adius(maximal tumor diameter in cm),(A)rtery(occurrence of arterial variations),and(L)ocation relative to the polar line.Comparison of the RAL scoring system was made with established nephrometry scoring systems.Results:A total of 48(60%)patients exhibited at least one vascular variation.In the 2D-Cohort,patients with vascular variations experienced significantly prolonged operation time,increased bleeding volume,and extended warm ischemia time compared with those without vascular variations.Conversely,the presence of vascular vari-ations did not significantly affect operative parameters in the 3D-Cohort.Furthermore,the 2D-Cohort demon-strated a notable decline in both short-and long-term estimated glomerular filtration rate(eGFR)changes com-pared with the 3D-Cohort,a trend consistent across patients with warm ischemia time≥25 min and those with vascular variations.Notably,the 2D-Cohort exhibited a larger margin of normal renal tissue compared with the 3D-Cohort.Elevated RAL scores correlated with larger tumor size,prolonged operation time,extended warm is-chemia time,and substantial postoperative eGFR decrease.The RAL scoring system displayed superior predictive capabilities in assessing postoperative eGFR changes compared with conventional nephrometry scoring systems.Conclusions:Our proposed 3D vascular variation-based nephrometry scoring system offers heightened proficiency in preoperative assessment,precise prediction of surgical complexity,and more accurate evaluation of postoper-ative renal function in CERT patients.展开更多
Objective:To analyze the characteristics,dynamic changes,and outcomes of the first imaging manifestations of 3 patients with severe COVID-19 in our hospital.Methods:Computed tomography(CT)findings of 3 patients with s...Objective:To analyze the characteristics,dynamic changes,and outcomes of the first imaging manifestations of 3 patients with severe COVID-19 in our hospital.Methods:Computed tomography(CT)findings of 3 patients with severe COVID-19 who tested positive by the nucleic acid test in our hospital were selected,mainly focusing on the morphology,distribution characteristics,and dynamic changes of the first CT findings.Results:3 patients with severe pneumonia were older,with one aged 80.The first chest CT examination for all 3 patients differed.Imaging showed a leafy distribution of consolidation,primarily affecting the lower lobes of both lungs and extending subpleurally.A grid-like pattern was observed,along with changes in the consolidation and air bronchogram.These changes had slower absorption,especially in patients with underlying diseases.Conclusion:CT manifestations of severe COVID-19 have specific characteristics and the analysis of their characteristics and dynamic changes provide valuable insights for clinical treatment.展开更多
Objective:To analyze the value of multi-slice spiral computed tomography(CT)and magnetic resonance imaging(MRI)in the diagnosis of carpal joint injury.Methods:A total of 130 patients with suspected wrist injuries admi...Objective:To analyze the value of multi-slice spiral computed tomography(CT)and magnetic resonance imaging(MRI)in the diagnosis of carpal joint injury.Methods:A total of 130 patients with suspected wrist injuries admitted to the Department of Orthopedics of our hospital from January 2023 to January 2024 were selected and randomly divided into a single group(n=65)and a joint group(n=65).The single group was diagnosed using multi-slice spiral CT,and the joint group was diagnosed using multi-slice spiral CT and magnetic resonance imaging,with pathological diagnosis as the gold standard.The diagnostic results of both groups were compared to the gold standard,and the diagnostic energy efficiency of both groups was compared.Results:The diagnostic results of the single group compared with the gold standard were significant(P<0.05).The diagnostic results of the joint group compared with the gold standard were not significant(P>0.05).The sensitivity and accuracy of diagnosis in the joint group were significantly higher than that in the single group(P<0.05).The specificity of diagnosis in the joint group was higher as compared to that in the single group(P>0.05).Conclusion:The combination of multi-slice spiral CT and MRI was highly accurate in diagnosing wrist injuries,and the misdiagnosis rate and leakage rate were relatively low.Hence,this diagnostic program is recommended to be popularized.展开更多
Perianal abscess is a common disease in anorectal surgery. If the diagnosis is not clear and the cure is thoroughly cleared, the recurrence and spread of anal fistula will cause life-long pain. Objective: To investiga...Perianal abscess is a common disease in anorectal surgery. If the diagnosis is not clear and the cure is thoroughly cleared, the recurrence and spread of anal fistula will cause life-long pain. Objective: To investigate the application of 3.0T MRI 3D CUBE T2WI lipid suppression sequence in the diagnosis of perianal abscess. Methods: Thirty-six patients with perianal abscess confirmed by operation were examined with 2D T2WI and 3D CUBE T2WI lipid suppression sequences before operation. Two imaging techniques were evaluated to show the types of perianal abscess, the number of abscesses, the number of internal orifices of abscess, and the number of fistula branches with anal fistula in abscess. Results: Among 36 cases of perianal abscess, there were 5 cases of anal subcutaneous abscess, 12 cases of ischiorectal space abscess (8 cases complicated with anal fistula), 6 cases of posterior anal space abscess, 5 cases of anal sphincter abscess (3 cases complicated with anal fistula), 2 cases of high intermuscular abscess, 2 cases of rectal submucosal abscess, 3 cases of complex abscess (3 cases complicated with anal fistula), 1 case of misdiagnosis, 2D T2WI lipid suppression sequence and 3D CUBE T2WI suppression. The accuracy of lipid sequence abscess typing was 80.6% (29/36) and 88.9% (32/36), respectively, with no significant difference (P > 0.05). Thirty-six patients were surgically diagnosed as having 32 internal orifices, 68.8% (22/32) and 93.8% (30/32) of 2D T2WI and 3D CUBE T2WI lipid-suppressing sequences, respectively, with significant difference (P Conclusion: 3D CUBE T2WI lipid suppression sequence is superior to 2D T2WI lipid suppression sequence in the classification of perianal abscess, the number of internal orifices of abscess and the number of fistula branches of abscess complicated with anal fistula. It can also determine the number of internal orifices of abscess complicated with anal fistula, the number of fistula branches, the shape of primary and branch fistula and the relationship among pelvic floor muscle tissues. It can provide more accurate images for preoperative and intraoperative clinical surgery.展开更多
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT...The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ...Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.展开更多
Large field-of-view(FoV) three-dimensional(3 D) photon-counting imaging is demonstrated with a single-pixel single-photon detector based on a Geiger-mode Si-avalanche photodiode. By removing the collecting lens(C...Large field-of-view(FoV) three-dimensional(3 D) photon-counting imaging is demonstrated with a single-pixel single-photon detector based on a Geiger-mode Si-avalanche photodiode. By removing the collecting lens(CL)before the detector, the FoV is expanded to ±10°. Thanks to the high detection efficiency, the signal-to-noise ratio of the imaging system is as high as 7.8 dB even without the CL when the average output laser pulse energy is about 0.45 pJ/pulse for imaging the targets at a distance of 5 m. A 3 D image overlaid with the reflectivity data is obtained according to the photon-counting time-of-flight measurement and the return photon intensity.展开更多
Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween Septem...Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SU1S performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and I conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were deter- mined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydranmios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, l0 cases of sacrococ- cygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia.展开更多
We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into ...We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters.展开更多
文摘Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention therapy. Methods: Eighteen patients with central lungcancer underwent MSCT with real time helical thin-slice CT scanning. Three-dimensional bronchialartery reconstruction was done at the console work-station. The space anatomical characters ofbronchial artery were observed through different rotations. Results: For 6 cases, thethree-dimensional images of bronchial artery (33.33%) could exactly show the origins, the routes(lung inner segment and mediatism segment) and the diameters of bronchial arteries. Vision rate ofbronchial arteries was the highest in pulmonary artery stricture and truncation groups, and thevessels' diameter became larger apparently. These characters demonstrated blood supply of this kindof central lung cancer come from bronchial artery. Volume rendering images were the best ones amongthree-dimensional images. Conclusion: Three-dimensional imaging with MSCT in bronchial artery canreveal the anatomical characters of bronchial artery and provide theoretical evidence on bloodsupply and intervention therapy of central lung cancer.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
基金supported by the National Natural Science Foundation of China (No. 12220101005)Natural Science Foundation of Jiangsu Province (No. BK20220132)+2 种基金Primary Research and Development Plan of Jiangsu Province (No. BE2019002-3)Fundamental Research Funds for Central Universities (No. NG2022004)the Foundation of the Graduate Innovation Center in NUAA (No. xcxjh20210613)。
文摘A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.
基金supported by grants from the National Key Research and Development Plan of China,No.31670986(to QTZ)the Science and Technology Project of Guangdong Province of China,No.2014B020227001,2017A050501017(to QTZ)the Science and Technology Project of Guangzhou of China,No.201807010082(to QTZ),201704030041(to JQ)
文摘The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging(Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by ~1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions(Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent(Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302)Beijing Institute of Technology Research Fund Program for Young Scholars (Grant No. 202122012)。
文摘Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.
基金The National Natural Science Foundation of China(No.60972130)
文摘In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.
基金the Deanship for Research Innovation,Ministry of Education in Saudi Arabia,for funding this research work through project number IFKSUDR-H122.
文摘In the current landscape of the COVID-19 pandemic,the utilization of deep learning in medical imaging,especially in chest computed tomography(CT)scan analysis for virus detection,has become increasingly significant.Despite its potential,deep learning’s“black box”nature has been a major impediment to its broader acceptance in clinical environments,where transparency in decision-making is imperative.To bridge this gap,our research integrates Explainable AI(XAI)techniques,specifically the Local Interpretable Model-Agnostic Explanations(LIME)method,with advanced deep learning models.This integration forms a sophisticated and transparent framework for COVID-19 identification,enhancing the capability of standard Convolutional Neural Network(CNN)models through transfer learning and data augmentation.Our approach leverages the refined DenseNet201 architecture for superior feature extraction and employs data augmentation strategies to foster robust model generalization.The pivotal element of our methodology is the use of LIME,which demystifies the AI decision-making process,providing clinicians with clear,interpretable insights into the AI’s reasoning.This unique combination of an optimized Deep Neural Network(DNN)with LIME not only elevates the precision in detecting COVID-19 cases but also equips healthcare professionals with a deeper understanding of the diagnostic process.Our method,validated on the SARS-COV-2 CT-Scan dataset,demonstrates exceptional diagnostic accuracy,with performance metrics that reinforce its potential for seamless integration into modern healthcare systems.This innovative approach marks a significant advancement in creating explainable and trustworthy AI tools for medical decisionmaking in the ongoing battle against COVID-19.
文摘BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.
基金supported by the National Natural Science Foundation of China(Grant Nos.42277150,41977219)Henan Provincial Science and Technology Research Project(Grant No.222102320271).
文摘The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory experiments and numerical simulations.In this study,the computerized tomography (CT) scanning and photogrammetry were employed to obtain the internal and surface joint structures of a limestone sample,respectively.To describe the joint geometry,the edge detection algorithms and a three-dimensional (3D) matrix mapping method were applied to reconstruct CT-based and photogrammetry-based jointed rock models.For comparison tests,the numerical uniaxial compression tests were conducted on an intact rock sample and a sample with a joint simplified to a plane using the parallel computing method.The results indicate that the mechanical characteristics and failure process of jointed rocks are significantly affected by the geometry of joints.The presence of joints reduces the uniaxial compressive strength (UCS),elastic modulus,and released acoustic emission (AE) energy of rocks by 37%–67%,21%–24%,and 52%–90%,respectively.Compared to the simplified joint sample,the proposed photogrammetry-based numerical model makes the most of the limited geometry information of joints.The UCS,accumulative released AE energy,and elastic modulus of the photogrammetry-based sample were found to be very close to those of the CT-based sample.The UCS value of the simplified joint sample (i.e.38.5 MPa) is much lower than that of the CT-based sample (i.e.72.3 MPa).Additionally,the accumulative released AE energy observed in the simplified joint sample is 3.899 times lower than that observed in the CT-based sample.CT scanning provides a reliable means to visualize the joints in rocks,which can be used to verify the reliability of photogrammetry techniques.The application of the photogrammetry-based sample enables detailed analysis for estimating the mechanical properties of jointed rocks.
文摘Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .
基金We thank researchers for patients enrolled from the FUSCC cohort.This work was supported by grants from the National Natural Science Foundation of China(grant numbers:81802525 and no.82172817)the Natural Science Foundation of Shanghai(grant number:20ZR1413100)+3 种基金Beijing Xisike Clinical Oncology Research Foundation(grant number:Y-HR2020MS-0948)the Shanghai“Science and Technology Innova-tion Action Plan”medical innovation research Project(grant num-ber:22Y11905100)the Shanghai Anti-Cancer Association Eyas Project(grant number:SACA-CY21A06 and no.SACA-CY21B01)Fudan University Fuqing scholars Project(grant number:FQXZ202304A).
文摘Background:Completely endophytic renal tumors(CERT)pose significant challenges due to their anatomical complexity and loss of visual clues about tumor location.A facile scoring model based on three-dimensional(3D)reconstructed images will assist in better assessing tumor location and vascular variations.Methods:In this retrospective study,80 patients diagnosed with CERT were included.Forty cases underwent preoperative assessment using 3D reconstructed imaging(3D-Cohort),while the remaining 40 cases were assessed using two-dimensional imaging(2D-Cohort).Vascular variations were evaluated by ascertaining the presence of renal arteries>1,prehilar branching arteries,and arteries anterior to veins.The proposed scoring system,termed RAL,encompassed three critical components:(R)adius(maximal tumor diameter in cm),(A)rtery(occurrence of arterial variations),and(L)ocation relative to the polar line.Comparison of the RAL scoring system was made with established nephrometry scoring systems.Results:A total of 48(60%)patients exhibited at least one vascular variation.In the 2D-Cohort,patients with vascular variations experienced significantly prolonged operation time,increased bleeding volume,and extended warm ischemia time compared with those without vascular variations.Conversely,the presence of vascular vari-ations did not significantly affect operative parameters in the 3D-Cohort.Furthermore,the 2D-Cohort demon-strated a notable decline in both short-and long-term estimated glomerular filtration rate(eGFR)changes com-pared with the 3D-Cohort,a trend consistent across patients with warm ischemia time≥25 min and those with vascular variations.Notably,the 2D-Cohort exhibited a larger margin of normal renal tissue compared with the 3D-Cohort.Elevated RAL scores correlated with larger tumor size,prolonged operation time,extended warm is-chemia time,and substantial postoperative eGFR decrease.The RAL scoring system displayed superior predictive capabilities in assessing postoperative eGFR changes compared with conventional nephrometry scoring systems.Conclusions:Our proposed 3D vascular variation-based nephrometry scoring system offers heightened proficiency in preoperative assessment,precise prediction of surgical complexity,and more accurate evaluation of postoper-ative renal function in CERT patients.
基金Qinghai Provincial Health Commission Medical and Health Science and Technology Project Guiding Topics“Analysis of Dynamic Changes in Chest Imaging of New Coronavirus Pneumonia in Qinghai Province”(2022-wjzdx-63)。
文摘Objective:To analyze the characteristics,dynamic changes,and outcomes of the first imaging manifestations of 3 patients with severe COVID-19 in our hospital.Methods:Computed tomography(CT)findings of 3 patients with severe COVID-19 who tested positive by the nucleic acid test in our hospital were selected,mainly focusing on the morphology,distribution characteristics,and dynamic changes of the first CT findings.Results:3 patients with severe pneumonia were older,with one aged 80.The first chest CT examination for all 3 patients differed.Imaging showed a leafy distribution of consolidation,primarily affecting the lower lobes of both lungs and extending subpleurally.A grid-like pattern was observed,along with changes in the consolidation and air bronchogram.These changes had slower absorption,especially in patients with underlying diseases.Conclusion:CT manifestations of severe COVID-19 have specific characteristics and the analysis of their characteristics and dynamic changes provide valuable insights for clinical treatment.
文摘Objective:To analyze the value of multi-slice spiral computed tomography(CT)and magnetic resonance imaging(MRI)in the diagnosis of carpal joint injury.Methods:A total of 130 patients with suspected wrist injuries admitted to the Department of Orthopedics of our hospital from January 2023 to January 2024 were selected and randomly divided into a single group(n=65)and a joint group(n=65).The single group was diagnosed using multi-slice spiral CT,and the joint group was diagnosed using multi-slice spiral CT and magnetic resonance imaging,with pathological diagnosis as the gold standard.The diagnostic results of both groups were compared to the gold standard,and the diagnostic energy efficiency of both groups was compared.Results:The diagnostic results of the single group compared with the gold standard were significant(P<0.05).The diagnostic results of the joint group compared with the gold standard were not significant(P>0.05).The sensitivity and accuracy of diagnosis in the joint group were significantly higher than that in the single group(P<0.05).The specificity of diagnosis in the joint group was higher as compared to that in the single group(P>0.05).Conclusion:The combination of multi-slice spiral CT and MRI was highly accurate in diagnosing wrist injuries,and the misdiagnosis rate and leakage rate were relatively low.Hence,this diagnostic program is recommended to be popularized.
文摘Perianal abscess is a common disease in anorectal surgery. If the diagnosis is not clear and the cure is thoroughly cleared, the recurrence and spread of anal fistula will cause life-long pain. Objective: To investigate the application of 3.0T MRI 3D CUBE T2WI lipid suppression sequence in the diagnosis of perianal abscess. Methods: Thirty-six patients with perianal abscess confirmed by operation were examined with 2D T2WI and 3D CUBE T2WI lipid suppression sequences before operation. Two imaging techniques were evaluated to show the types of perianal abscess, the number of abscesses, the number of internal orifices of abscess, and the number of fistula branches with anal fistula in abscess. Results: Among 36 cases of perianal abscess, there were 5 cases of anal subcutaneous abscess, 12 cases of ischiorectal space abscess (8 cases complicated with anal fistula), 6 cases of posterior anal space abscess, 5 cases of anal sphincter abscess (3 cases complicated with anal fistula), 2 cases of high intermuscular abscess, 2 cases of rectal submucosal abscess, 3 cases of complex abscess (3 cases complicated with anal fistula), 1 case of misdiagnosis, 2D T2WI lipid suppression sequence and 3D CUBE T2WI suppression. The accuracy of lipid sequence abscess typing was 80.6% (29/36) and 88.9% (32/36), respectively, with no significant difference (P > 0.05). Thirty-six patients were surgically diagnosed as having 32 internal orifices, 68.8% (22/32) and 93.8% (30/32) of 2D T2WI and 3D CUBE T2WI lipid-suppressing sequences, respectively, with significant difference (P Conclusion: 3D CUBE T2WI lipid suppression sequence is superior to 2D T2WI lipid suppression sequence in the classification of perianal abscess, the number of internal orifices of abscess and the number of fistula branches of abscess complicated with anal fistula. It can also determine the number of internal orifices of abscess complicated with anal fistula, the number of fistula branches, the shape of primary and branch fistula and the relationship among pelvic floor muscle tissues. It can provide more accurate images for preoperative and intraoperative clinical surgery.
文摘The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Basic Research Program of China under Grant No 2014CB339803+2 种基金the Major National Development Project of Scientific Instrument and Equipment under Grant No2011YQ150021the National Natural Science Foundation of China under Grant Nos 61575214,61574155,61404149 and 61404150the Shanghai Municipal Commission of Science and Technology under Grant Nos 14530711300,15560722000 and 15ZR1447500
文摘Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11774095,11722431 and 11621404the Shanghai Basic Research Project under Grant No 18JC1412200+2 种基金the National Key R&D Program of China under Grant No2016YFB0400904the Program of Introducing Talents of Discipline to Universities under Grant No B12024the Shanghai International Cooperation Project under Grant No 16520710600
文摘Large field-of-view(FoV) three-dimensional(3 D) photon-counting imaging is demonstrated with a single-pixel single-photon detector based on a Geiger-mode Si-avalanche photodiode. By removing the collecting lens(CL)before the detector, the FoV is expanded to ±10°. Thanks to the high detection efficiency, the signal-to-noise ratio of the imaging system is as high as 7.8 dB even without the CL when the average output laser pulse energy is about 0.45 pJ/pulse for imaging the targets at a distance of 5 m. A 3 D image overlaid with the reflectivity data is obtained according to the photon-counting time-of-flight measurement and the return photon intensity.
文摘Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SU1S performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and I conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were deter- mined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydranmios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, l0 cases of sacrococ- cygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia.
基金Project supported by the National Basic Research Program of China (Grant No. 2010CB327702)
文摘We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters.