Objective:This study focused on the clinical application value of dynamic CT perfusion imaging in stroke.Methods:A total of 92 patients with stroke were enrolled in this study.All patients were selected from December ...Objective:This study focused on the clinical application value of dynamic CT perfusion imaging in stroke.Methods:A total of 92 patients with stroke were enrolled in this study.All patients were selected from December 2017 to December 2018 according to different diagnostic methods.They were randomly divided into two groups:the observation group and control group.The number of patients in each group was 46.The observation group mainly used dynamic CT perfusion imaging for diagnosis while the control group mainly used CT plain scan.The diagnostic effects of the two groups of patients and the hemodynamic parameters of the surrounding area of sub-acute hematoma and the acute phase of stroke in the observation group were compared.Results:The clinical diagnosis of the observation group was 95.65%while the clinical diagnosis of the control group was 69.57%.The observation group was higher than that of the control group and the difference was significant.In addition,the hemodynamic parameters of the acute phase of the observation group and the sub-acute hematoma were also varied.Conclusion:Dynamic CT perfusion imaging has significant clinical value in stroke,and it is worthy of further application.展开更多
Summary: To study the dynamic changes of CT perfusion parameters during the first 12 h in the embolic cerebral ischemia models. Local cerebral ischemia model were established in 7 New Zealand white rabbits. All CT sca...Summary: To study the dynamic changes of CT perfusion parameters during the first 12 h in the embolic cerebral ischemia models. Local cerebral ischemia model were established in 7 New Zealand white rabbits. All CT scans were performed with a GE Lightspeed 16 multislice CT. Following the baseline scan, further CT perfusion scans were performed at the same locations 20 min, 1-6 h and 8, 10 and 12 h after the embolus delivery. Maps of all parameters were obtained by CT perfusion software at each time point. The brains, taken 12 h after the scan, were sliced corresponding to the positions of the CT slices and stained by 2,3,5-triphenyltetrazolium chloride (TTC). On the basis of the TTC results, the ischemic sides were divided into 3 regions: core, penumbra and the relatively normal region. The changes of all parameters were then divided into 3 stages. In the first two hours (the first stage), the CBV dropped more remarkably in the core than in the penumbra but rose slightly in the relatively normal region while the CBF decreased and MTT, TTP extended in all regions to varying degrees. In the 2nd-5th h (the second stage), all the parameters fluctuated slightly around a certain level. In the 5th-12th h (the third stage), the CBV and CBF dropped, and MTT and TTP were prolonged or shortened slightly in the core and penumbra though much notably in the former while the CBV, CBF rose and MTT, TTP were shortened remarkably in the relatively normal region. We experimentally demonstrated that the location and extent of cerebral ischemia could be accurately assessed by CT perfusion imaging. The pathophysiology of the ischemia could be reflected by the CT perfusion to varying degrees.展开更多
Imaging technologies are utilized to study the brain morphology and the functions of rat models of Parkinson disease (PD). Magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) are used to ob...Imaging technologies are utilized to study the brain morphology and the functions of rat models of Parkinson disease (PD). Magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) are used to obtain morphological imaging data. Functional imaging data, such as the spectrum and blood flow changes are obtained by proton magnetic resonance spectroscopy (1H-MRS) and CT perfusion (CTP). Results show that PD rat models have no characteristic morphological imaging abnormalities, but exist regional cerebral blood flow (CBF) reductions and spectral changes in the striatum.展开更多
Thirty-four patients with cerebral infarction and 18 patients with transient ischemic attack were examined by multi-slice spiral CT scan, CT perfusion imaging, and CT angiography within 6 hours after onset. By CT perf...Thirty-four patients with cerebral infarction and 18 patients with transient ischemic attack were examined by multi-slice spiral CT scan, CT perfusion imaging, and CT angiography within 6 hours after onset. By CT perfusion imaging, 29 cases in the cerebral infarction group and 10 cases in the transient ischemic attack group presented with abnormal blood flow perfusion, which corresponded to the clinical symptoms. By CT angiography, various degrees of vascular stenosis could be detected in 41 patients, including 33 in the cerebral infarction group and eight in the transient ischemic attack group. The incidence of intracranial artery stenosis was higher than that of extracranial artery stenosis. The intracranial artery stenosis was located predominantly in the middle cerebral artery and carotid artery siphon, while the extracranial artery stenosis occurred mainly in the bifurcation of the common carotid artery and the opening of the vertebral artery. There were 34 cases (83%) with convict vascular stenosis and perfusion abnormalities, and five cases (45%) with perfusion abnormalities but without convict vascular stenosis. The incidence of cerebral infarction in patients with National Institutes of Health Stroke Scale scores 〉 5 points during onset was significantly higher than that in patients with National Institutes of Health Stroke Scale scores 〈 5 points. These experimental findings indicate that the combined application of various CT imaging methods allows early diagnosis of acute ischemic cerebrovascular disease, which can comprehensively analyze the pathogenesis and severity of acute ischemic cerebrovascular disease at the morphological and functional levels.展开更多
目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信...目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信噪比(SNR)。比较四组图像主观质量评分。分析不同部位CT值、SD、SNR与图像主观质量评分的相关性。结果:B组的延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于A组;C组的延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值高于A组;D组延髓、额叶灰质、颞肌肌肉CT值明显低于A组,脑室、额叶白质、小脑外侧CT值明显高于A组;C组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于C组;D组脑室CT值明显高于C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值明显低于A组;C组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值均明显高于B组;C组额叶灰质SD明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、肌肉SD均明显低于B组、C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR均明显高于A组;C组、D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR值明显高于B组;C组、D组脑室SNR明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR明显高于C组,差异有统计学意义(P<0.05)。D组图像主观质量评分最高,差异有统计学意义(P<0.05)。延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧及颞肌肌肉SD与主观质量评分呈明显负相关,SNR与主观质量评分间呈明显正相关,差异有统计学意义(P<0.05)。结论:利用Brain Time Stack图像融合技术对头部CT扫描检查图像处理,动脉期结合前一期及后一期的图像数据在处理后具有更好的质量和更少的噪音。展开更多
Cerebral perfusion computed tomography(PCT)is an important imaging modality for evaluating cerebrovascular diseases and stroke symptoms.With widespread public concern about the potential cancer risks and health hazard...Cerebral perfusion computed tomography(PCT)is an important imaging modality for evaluating cerebrovascular diseases and stroke symptoms.With widespread public concern about the potential cancer risks and health hazards associated with cumulative radiation exposure in PCT imaging,considerable research has been conducted to reduce the radiation dose in X-ray-based brain perfusion imaging.Reducing the dose of X-rays causes severe noise and artifacts in PCT images.To solve this problem,we propose a deep learning method called NCS-Unet.The exceptional characteristics of non-subsampled contourlet transform(NSCT)and the Sobel filter are introduced into NCS-Unet.NSCT decomposes the convolved features into high-and low-frequency components.The decomposed high-frequency component retains image edges,contrast imaging traces,and noise,whereas the low-frequency component retains the main image information.The Sobel filter extracts the contours of the original image and the imaging traces caused by the contrast agent decay.The extracted information is added to NCS-Unet to improve its performance in noise reduction and artifact removal.Qualitative and quantitative analyses demonstrated that the proposed NCS-Unet can improve the quality of low-dose cone-beam CT perfusion reconstruction images and the accuracy of perfusion parameter calculations.展开更多
In order to effectively improve the pathological diagnosis capability and feature resolution of 3D human brain CT images,a threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel ...In order to effectively improve the pathological diagnosis capability and feature resolution of 3D human brain CT images,a threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel grayscale feature decomposition is proposed in this paper.In this method,first,original 3D human brain image information is collected,and CT image filtering is performed to the collected information through the gradient value decomposition method,and edge contour features of the 3D human brain CT image are extracted.Then,the threshold segmentation method is adopted to segment the regional pixel feature block of the 3D human brain CT image to segment the image into block vectors with high-resolution feature points,and the 3D human brain CT image is reconstructed with the salient feature point as center.Simulation results show that the method proposed in this paper can provide accuracy up to 100%when the signal-to-noise ratio is 0,and with the increase of signal-to-noise ratio,the accuracy provided by this method is stable at 100%.Comparison results show that the threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel grayscale feature decomposition is signicantly better than traditional methods in pathological feature estimation accuracy,and it effectively improves the rapid pathological diagnosis and positioning recognition abilities to CT images.展开更多
Cerebral blood perfusion and cerebrovascular lesions are important factors that can affect the therapeutic efficacy of thrombolysis.At present,the majority of studies focus on assessing the accuracy of lesion location...Cerebral blood perfusion and cerebrovascular lesions are important factors that can affect the therapeutic efficacy of thrombolysis.At present,the majority of studies focus on assessing the accuracy of lesion location using imaging methods before treatment,with less attention to predictions of outcomes after thrombolysis.Thus,in the present study,we assessed the efficacy of combined computed tomography(CT) perfusion and CT angiography in predicting clinical outcomes after thrombolysis in ischemic stroke patients.The study included 52 patients who received both CT perfusion and CT angiography.Patients were grouped based on the following criteria to compare clinical outcomes:(1) thrombolytic and non-thrombolytic patients,(2) thrombolytic patients with CT angiography showing the presence or absence of a vascular stenosis,(3) thrombolytic patients with CT perfusion showing the presence or absence of hemodynamic mismatch,and(4) different CT angiography and CT perfusion results.Short-term outcome was assessed by the 24-hour National Institution of Health Stroke Scale score change.Long-term outcome was assessed by the 3-month modified Rankin Scale score.Of 52 ischemic stroke patients,29 were treated with thrombolysis and exhibited improved short-term outcomes compared with those without thrombolysis treatment(23 patients).Patients with both vascular stenosis and blood flow mismatch(13 patients) exhibited the best short-term outcome,while there was no correlation of long-term outcome with CT angiography or CT perfusion findings.These data suggest that combined CT perfusion and CT angiography are useful for predicting short-term outcome,but not long-term outcome,after thrombolysis.展开更多
Purpose: To derive a clinically-practical margin formula between clinical target volume (CTV) and planning target volume (PTV) for single-fraction stereotactic radiosurgery (SRS). Methods: In previous publications on ...Purpose: To derive a clinically-practical margin formula between clinical target volume (CTV) and planning target volume (PTV) for single-fraction stereotactic radiosurgery (SRS). Methods: In previous publications on the margin between the CTV and the PTV, a Gaussian function with zero mean was assumed for the systematic error and the machine systematic error was completely ignored. In this work we adopted a Dirac delta function for the machine systematic error for a given machine with nonzero mean systematic error. Mathematical formulas for calculating the CTV-PTV margin for single-fraction SRS treatments were proposed. Results: Margins for single fraction treatments were derived such that the CTVs received the prescribed dose in 95% of the SRS patients. The margin defined in this study was machine specific and accounted for nonzero mean systematic error. The differences between our formulas and a previously published formula were discussed. Conclusion: Clinical margin formulas were proposed for determining the margin between the CTV and the PTV in SRS treatments. Previous margin’s recipes, being derived specifically for conventional treatments, may be inappropriate for single-fraction SRS and could result in geometric miss of the target and even treatment failure for machines possessing of large systematic errors.展开更多
目的探讨Brain Time Stack图像融合技术在80 kV管电压下对头部灌注CT图像质量改善的应用价值。方法回顾性分析2021年7—9月在北京医院放射科行头部灌注扫描的31例患者资料。根据头部CT灌注扫描获得的时间-密度曲线,选择动脉峰值期、峰...目的探讨Brain Time Stack图像融合技术在80 kV管电压下对头部灌注CT图像质量改善的应用价值。方法回顾性分析2021年7—9月在北京医院放射科行头部灌注扫描的31例患者资料。根据头部CT灌注扫描获得的时间-密度曲线,选择动脉峰值期、峰值前一期及峰值后一期,共3个时相的0.5 mm图像,进行Brain Time Stack后处理,并将图像数据分为四组:A组(动脉期)、B组(动脉期结合前一期相)、C组(动脉期结合后一期相)、D组(动脉期结合前一期及后一期)。通过t检验比较4组图像的额叶白质、灰质、侧脑室、延髓、小脑的CT值、标准差值(Standard Deviation,SD)、信噪比(Signal to Noise Ratio,SNR)及对比噪声比(Contrast to Noise Ratio,CNR)的统计学差异。此外,由2名医师分别对4组图像的图像质量进行主观评分,并通过Mann-Whitney U检验对比其统计学差异。结果4组图像的额叶白质、灰质、侧脑室、延髓、小脑的SD值、SNR及CNR均存在统计学差异(P<0.001),其中D组图像的噪声最低、SNR及CNR最高。4组图像之间CT值无统计学差异(P>0.05)。此外,4组图像的主观评分存在统计学差异,D组明显优于A、B、C组(P<0.05)。两医师间主观评分一致性较好,Kappa值为0.817(P<0.001)。结论Brain Time Stack图像融合技术可有效降低降低图像噪声,明显改善图像质量。展开更多
文摘Objective:This study focused on the clinical application value of dynamic CT perfusion imaging in stroke.Methods:A total of 92 patients with stroke were enrolled in this study.All patients were selected from December 2017 to December 2018 according to different diagnostic methods.They were randomly divided into two groups:the observation group and control group.The number of patients in each group was 46.The observation group mainly used dynamic CT perfusion imaging for diagnosis while the control group mainly used CT plain scan.The diagnostic effects of the two groups of patients and the hemodynamic parameters of the surrounding area of sub-acute hematoma and the acute phase of stroke in the observation group were compared.Results:The clinical diagnosis of the observation group was 95.65%while the clinical diagnosis of the control group was 69.57%.The observation group was higher than that of the control group and the difference was significant.In addition,the hemodynamic parameters of the acute phase of the observation group and the sub-acute hematoma were also varied.Conclusion:Dynamic CT perfusion imaging has significant clinical value in stroke,and it is worthy of further application.
文摘Summary: To study the dynamic changes of CT perfusion parameters during the first 12 h in the embolic cerebral ischemia models. Local cerebral ischemia model were established in 7 New Zealand white rabbits. All CT scans were performed with a GE Lightspeed 16 multislice CT. Following the baseline scan, further CT perfusion scans were performed at the same locations 20 min, 1-6 h and 8, 10 and 12 h after the embolus delivery. Maps of all parameters were obtained by CT perfusion software at each time point. The brains, taken 12 h after the scan, were sliced corresponding to the positions of the CT slices and stained by 2,3,5-triphenyltetrazolium chloride (TTC). On the basis of the TTC results, the ischemic sides were divided into 3 regions: core, penumbra and the relatively normal region. The changes of all parameters were then divided into 3 stages. In the first two hours (the first stage), the CBV dropped more remarkably in the core than in the penumbra but rose slightly in the relatively normal region while the CBF decreased and MTT, TTP extended in all regions to varying degrees. In the 2nd-5th h (the second stage), all the parameters fluctuated slightly around a certain level. In the 5th-12th h (the third stage), the CBV and CBF dropped, and MTT and TTP were prolonged or shortened slightly in the core and penumbra though much notably in the former while the CBV, CBF rose and MTT, TTP were shortened remarkably in the relatively normal region. We experimentally demonstrated that the location and extent of cerebral ischemia could be accurately assessed by CT perfusion imaging. The pathophysiology of the ischemia could be reflected by the CT perfusion to varying degrees.
基金Supported by the National Natural Science Foundation of China (30671997)~~
文摘Imaging technologies are utilized to study the brain morphology and the functions of rat models of Parkinson disease (PD). Magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) are used to obtain morphological imaging data. Functional imaging data, such as the spectrum and blood flow changes are obtained by proton magnetic resonance spectroscopy (1H-MRS) and CT perfusion (CTP). Results show that PD rat models have no characteristic morphological imaging abnormalities, but exist regional cerebral blood flow (CBF) reductions and spectral changes in the striatum.
基金supported by the Youth Fund of the First Clinical College of Liaoning Medical University, No. 2010C20
文摘Thirty-four patients with cerebral infarction and 18 patients with transient ischemic attack were examined by multi-slice spiral CT scan, CT perfusion imaging, and CT angiography within 6 hours after onset. By CT perfusion imaging, 29 cases in the cerebral infarction group and 10 cases in the transient ischemic attack group presented with abnormal blood flow perfusion, which corresponded to the clinical symptoms. By CT angiography, various degrees of vascular stenosis could be detected in 41 patients, including 33 in the cerebral infarction group and eight in the transient ischemic attack group. The incidence of intracranial artery stenosis was higher than that of extracranial artery stenosis. The intracranial artery stenosis was located predominantly in the middle cerebral artery and carotid artery siphon, while the extracranial artery stenosis occurred mainly in the bifurcation of the common carotid artery and the opening of the vertebral artery. There were 34 cases (83%) with convict vascular stenosis and perfusion abnormalities, and five cases (45%) with perfusion abnormalities but without convict vascular stenosis. The incidence of cerebral infarction in patients with National Institutes of Health Stroke Scale scores 〉 5 points during onset was significantly higher than that in patients with National Institutes of Health Stroke Scale scores 〈 5 points. These experimental findings indicate that the combined application of various CT imaging methods allows early diagnosis of acute ischemic cerebrovascular disease, which can comprehensively analyze the pathogenesis and severity of acute ischemic cerebrovascular disease at the morphological and functional levels.
文摘目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信噪比(SNR)。比较四组图像主观质量评分。分析不同部位CT值、SD、SNR与图像主观质量评分的相关性。结果:B组的延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于A组;C组的延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值高于A组;D组延髓、额叶灰质、颞肌肌肉CT值明显低于A组,脑室、额叶白质、小脑外侧CT值明显高于A组;C组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于C组;D组脑室CT值明显高于C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值明显低于A组;C组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值均明显高于B组;C组额叶灰质SD明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、肌肉SD均明显低于B组、C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR均明显高于A组;C组、D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR值明显高于B组;C组、D组脑室SNR明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR明显高于C组,差异有统计学意义(P<0.05)。D组图像主观质量评分最高,差异有统计学意义(P<0.05)。延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧及颞肌肌肉SD与主观质量评分呈明显负相关,SNR与主观质量评分间呈明显正相关,差异有统计学意义(P<0.05)。结论:利用Brain Time Stack图像融合技术对头部CT扫描检查图像处理,动脉期结合前一期及后一期的图像数据在处理后具有更好的质量和更少的噪音。
基金supported in part by Science and Technology Program of Guangdong (No. 2018B030333001)the State’s Key Project of Research and Development Plan (Nos. 2017YFC0109202,2017YFA0104302 and 2017YFC0107900)the National Natural Science Foundation (Nos. 81530060 and 61871117)
文摘Cerebral perfusion computed tomography(PCT)is an important imaging modality for evaluating cerebrovascular diseases and stroke symptoms.With widespread public concern about the potential cancer risks and health hazards associated with cumulative radiation exposure in PCT imaging,considerable research has been conducted to reduce the radiation dose in X-ray-based brain perfusion imaging.Reducing the dose of X-rays causes severe noise and artifacts in PCT images.To solve this problem,we propose a deep learning method called NCS-Unet.The exceptional characteristics of non-subsampled contourlet transform(NSCT)and the Sobel filter are introduced into NCS-Unet.NSCT decomposes the convolved features into high-and low-frequency components.The decomposed high-frequency component retains image edges,contrast imaging traces,and noise,whereas the low-frequency component retains the main image information.The Sobel filter extracts the contours of the original image and the imaging traces caused by the contrast agent decay.The extracted information is added to NCS-Unet to improve its performance in noise reduction and artifact removal.Qualitative and quantitative analyses demonstrated that the proposed NCS-Unet can improve the quality of low-dose cone-beam CT perfusion reconstruction images and the accuracy of perfusion parameter calculations.
文摘In order to effectively improve the pathological diagnosis capability and feature resolution of 3D human brain CT images,a threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel grayscale feature decomposition is proposed in this paper.In this method,first,original 3D human brain image information is collected,and CT image filtering is performed to the collected information through the gradient value decomposition method,and edge contour features of the 3D human brain CT image are extracted.Then,the threshold segmentation method is adopted to segment the regional pixel feature block of the 3D human brain CT image to segment the image into block vectors with high-resolution feature points,and the 3D human brain CT image is reconstructed with the salient feature point as center.Simulation results show that the method proposed in this paper can provide accuracy up to 100%when the signal-to-noise ratio is 0,and with the increase of signal-to-noise ratio,the accuracy provided by this method is stable at 100%.Comparison results show that the threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel grayscale feature decomposition is signicantly better than traditional methods in pathological feature estimation accuracy,and it effectively improves the rapid pathological diagnosis and positioning recognition abilities to CT images.
基金supported by the Science and Technical Committee of Shanghai Municipality of China,No.16QA1400900the Outstanding Youth Grant from Shanghai Municipal Commission of Health and Family Planning of China,No.XYQ2013107+1 种基金the China Postdoctoral Science Foundation,No.2016M592595the National Key Research and Development Program of China,No.2016YFA0203700
文摘Cerebral blood perfusion and cerebrovascular lesions are important factors that can affect the therapeutic efficacy of thrombolysis.At present,the majority of studies focus on assessing the accuracy of lesion location using imaging methods before treatment,with less attention to predictions of outcomes after thrombolysis.Thus,in the present study,we assessed the efficacy of combined computed tomography(CT) perfusion and CT angiography in predicting clinical outcomes after thrombolysis in ischemic stroke patients.The study included 52 patients who received both CT perfusion and CT angiography.Patients were grouped based on the following criteria to compare clinical outcomes:(1) thrombolytic and non-thrombolytic patients,(2) thrombolytic patients with CT angiography showing the presence or absence of a vascular stenosis,(3) thrombolytic patients with CT perfusion showing the presence or absence of hemodynamic mismatch,and(4) different CT angiography and CT perfusion results.Short-term outcome was assessed by the 24-hour National Institution of Health Stroke Scale score change.Long-term outcome was assessed by the 3-month modified Rankin Scale score.Of 52 ischemic stroke patients,29 were treated with thrombolysis and exhibited improved short-term outcomes compared with those without thrombolysis treatment(23 patients).Patients with both vascular stenosis and blood flow mismatch(13 patients) exhibited the best short-term outcome,while there was no correlation of long-term outcome with CT angiography or CT perfusion findings.These data suggest that combined CT perfusion and CT angiography are useful for predicting short-term outcome,but not long-term outcome,after thrombolysis.
文摘Purpose: To derive a clinically-practical margin formula between clinical target volume (CTV) and planning target volume (PTV) for single-fraction stereotactic radiosurgery (SRS). Methods: In previous publications on the margin between the CTV and the PTV, a Gaussian function with zero mean was assumed for the systematic error and the machine systematic error was completely ignored. In this work we adopted a Dirac delta function for the machine systematic error for a given machine with nonzero mean systematic error. Mathematical formulas for calculating the CTV-PTV margin for single-fraction SRS treatments were proposed. Results: Margins for single fraction treatments were derived such that the CTVs received the prescribed dose in 95% of the SRS patients. The margin defined in this study was machine specific and accounted for nonzero mean systematic error. The differences between our formulas and a previously published formula were discussed. Conclusion: Clinical margin formulas were proposed for determining the margin between the CTV and the PTV in SRS treatments. Previous margin’s recipes, being derived specifically for conventional treatments, may be inappropriate for single-fraction SRS and could result in geometric miss of the target and even treatment failure for machines possessing of large systematic errors.
文摘目的探讨Brain Time Stack图像融合技术在80 kV管电压下对头部灌注CT图像质量改善的应用价值。方法回顾性分析2021年7—9月在北京医院放射科行头部灌注扫描的31例患者资料。根据头部CT灌注扫描获得的时间-密度曲线,选择动脉峰值期、峰值前一期及峰值后一期,共3个时相的0.5 mm图像,进行Brain Time Stack后处理,并将图像数据分为四组:A组(动脉期)、B组(动脉期结合前一期相)、C组(动脉期结合后一期相)、D组(动脉期结合前一期及后一期)。通过t检验比较4组图像的额叶白质、灰质、侧脑室、延髓、小脑的CT值、标准差值(Standard Deviation,SD)、信噪比(Signal to Noise Ratio,SNR)及对比噪声比(Contrast to Noise Ratio,CNR)的统计学差异。此外,由2名医师分别对4组图像的图像质量进行主观评分,并通过Mann-Whitney U检验对比其统计学差异。结果4组图像的额叶白质、灰质、侧脑室、延髓、小脑的SD值、SNR及CNR均存在统计学差异(P<0.001),其中D组图像的噪声最低、SNR及CNR最高。4组图像之间CT值无统计学差异(P>0.05)。此外,4组图像的主观评分存在统计学差异,D组明显优于A、B、C组(P<0.05)。两医师间主观评分一致性较好,Kappa值为0.817(P<0.001)。结论Brain Time Stack图像融合技术可有效降低降低图像噪声,明显改善图像质量。