期刊文献+
共找到330,359篇文章
< 1 2 250 >
每页显示 20 50 100
Artificial intelligence for characterization of diminutive colorectal polyps:A feasibility study comparing two computer-aided diagnosis systems
1
作者 Quirine Eunice Wennie van der Zander Ramon M Schreuder +9 位作者 Ayla Thijssen Carolus H J Kusters Nikoo Dehghani Thom Scheeve Bjorn Winkens Mirjam C M van der Ende-van Loon Peter H N de With Fons van der Sommen Ad A M Masclee Erik J Schoon 《Artificial Intelligence in Gastrointestinal Endoscopy》 2024年第1期11-22,共12页
BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Poly... BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP. 展开更多
关键词 Artificial intelligence Colorectal polyp characterization Computer aided diagnosis Diminutive colorectal polyps Optical diagnosis Self-critical artificial intelligence
下载PDF
Understanding Osteoporosis: Pathophysiology, Risk Factors, Diagnosis, and Management
2
作者 Mahmoud Ismail 《Advances in Aging Research》 CAS 2024年第3期25-40,共16页
Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and deterioration of bone architecture, resulting in reduced bone strength and, consequently, increased susceptibility to fra... Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and deterioration of bone architecture, resulting in reduced bone strength and, consequently, increased susceptibility to fractures which poses a significant public health concern worldwide, particularly in aging populations [1]. The health-economic impact of vertebral and hip fractures has been extensively explored and it is well known that these fractures are associated with morbidity/disability and increased mortality;they also account for a substantial portion of the direct fracture costs. This review aims to provide a comprehensive overview of osteoporosis, including its pathophysiology, risk factors, diagnostic approaches, and management strategies. By elucidating the multifaceted nature of this condition, healthcare providers can better identify individuals at risk, implement preventive measures, and optimize treatment to reduce the burden of osteoporotic fractures. 展开更多
关键词 OSTEOPOROSIS Bone Mineral Density Fractures Risk Factors diagnosis MANAGEMENT FRAX (Fracture Risk Assessment Tool) Trabecular Bone Score (TBS)
下载PDF
Cost analysis of radical resection of malignant breast tumors under the China Healthcare Security Diagnosis Related Groups payment system
3
作者 Yun-He Hu Ai-Dong Li 《World Journal of Clinical Cases》 SCIE 2024年第20期4174-4179,共6页
BACKGROUND Breast cancer is one of the most common malignant tumors in women worldwide and poses a severe threat to their health.Therefore,this study examined patients who underwent breast cancer surgery,analyzed hosp... BACKGROUND Breast cancer is one of the most common malignant tumors in women worldwide and poses a severe threat to their health.Therefore,this study examined patients who underwent breast cancer surgery,analyzed hospitalization costs and structure,and explored the impact of China Healthcare Security Diagnosis Related Groups(CHS-DRG)management on patient costs.It aimed to provide medical institutions with ways to reduce costs,optimize cost structures,reduce patient burden,and improve service efficiency.AIM To study the CHS-DRG payment system’s impact on breast cancer surgery costs.METHODS Using the CHS-DRG(version 1.1)grouping criteria,4073 patients,who underwent the radical resection of breast malignant tumors from January to December 2023,were included in the JA29 group;1028 patients were part of the CHS-DRG payment system,unlike the rest.Through an independent sample t-test,the length of hospital stay as well as total hospitalization,medicine and consumables,medical,nursing,medical technology,and management expenses were compared.Pearson’s correlation coefficient was used to test the cost correlation.RESULTS In terms of hospitalization expenses,patients in the CHS-DRG payment group had lower medical,nursing,and management expenses than those in the diagnosis-related group(DRG)non-payment group.For patients in the DRG payment group,the factors affecting the total hospitalization cost,in descending order of relevance,were medicine and consumable costs,consumable costs,medicine costs,medical costs,medical technology costs,management costs,nursing costs,and length of hospital stay.For patients in the DRG nonpayment group,the factors affecting the total hospitalization expenses in descending order of relevance were medicines and consumable expenses,consumable expenses,medical technology expenses,the cost of medicines,medical expenses,nursing expenses,length of hospital stay,and management expenses.CONCLUSION The CHS-DRG system can help control and reduce unnecessary medical expenses by controlling medicine costs,medical consumable costs,and the length of hospital stay while ensuring medical safety. 展开更多
关键词 China Healthcare Security diagnosis Related Groups Real-world study Radical resection of malignant breast tumors Hospitalization costs Cost structure Average length of stay
下载PDF
Research on Machine Tool Fault Diagnosis and Maintenance Optimization in Intelligent Manufacturing Environments
4
作者 Feiyang Cao 《Journal of Electronic Research and Application》 2024年第4期108-114,共7页
In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machin... In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects. 展开更多
关键词 Intelligent manufacturing Machine tool fault diagnosis Predictive maintenance Big data Machine learning System integration
下载PDF
Stage at diagnosis of colorectal cancer through diagnostic route:Who should be screened? 被引量:6
5
作者 Nobukazu Agatsuma Takahiro Utsumi +11 位作者 Yoshitaka Nishikawa Takahiro Horimatsu Takeshi Seta Yukitaka Yamashita Yukari Tanaka Takahiro Inoue Yuki Nakanishi Takahiro Shimizu Mikako Ohno Akane Fukushima Takeo Nakayama Hiroshi Seno 《World Journal of Gastroenterology》 SCIE CAS 2024年第10期1368-1376,共9页
BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of... BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of patients remain unscreened,with>70%of cases diagnosed outside screening.Although identifying specific subgroups for whom CRC screening should be particularly recommended is crucial owing to limited resources,the association between the diagnostic routes and identification of these subgroups has been less appreciated.In the Japanese cancer registry,the diagnostic routes for groups discovered outside of screening are primarily categorized into those with comorbidities found during hospital visits and those with CRC-related symptoms.AIM To clarify the stage at CRC diagnosis based on diagnostic routes.METHODS We conducted a retrospective observational study using a cancer registry of patients with CRC between January 2016 and December 2019 at two hospitals.The diagnostic routes were primarily classified into three groups:Cancer screening,follow-up,and symptomatic.The early-stage was defined as Stages 0 or I.Multivariate and univariate logistic regressions were exploited to determine the odds of early-stage diagnosis in the symptomatic and cancer screening groups,referencing the follow-up group.The adjusted covariates were age,sex,and tumor location.RESULTS Of the 2083 patients,715(34.4%),1064(51.1%),and 304(14.6%)belonged to the follow-up,symptomatic,and cancer screening groups,respectively.Among the 2083 patients,CRCs diagnosed at an early stage were 57.3%(410 of 715),23.9%(254 of 1064),and 59.5%(181 of 304)in the follow-up,symptomatic,and cancer screening groups,respectively.The symptomatic group exhibited a lower likelihood of early-stage diagnosis than the follow-up group[P<0.001,adjusted odds ratio(aOR),0.23;95%confidence interval(95%CI):0.19-0.29].The likelihood of diagnosis at an early stage was similar between the follow-up and cancer screening groups(P=0.493,aOR for early-stage diagnosis in the cancer screening group vs follow-up group=1.11;95%CI=0.82-1.49).CONCLUSION CRCs detected during hospital visits for comorbidities were diagnosed earlier,similar to cancer screening.CRC screening should be recommended,particularly for patients without periodical hospital visits for comorbidities. 展开更多
关键词 Colorectal neoplasms Cancer registry Diagnostic route Cancer screening Stage at diagnosis
下载PDF
Label Recovery and Trajectory Designable Network for Transfer Fault Diagnosis of Machines With Incorrect Annotation 被引量:1
6
作者 Bin Yang Yaguo Lei +2 位作者 Xiang Li Naipeng Li Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期932-945,共14页
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio... The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation. 展开更多
关键词 Deep transfer learning domain adaptation incorrect label annotation intelligent fault diagnosis rotating machines
下载PDF
Laser spectroscopy imaging technique coupled withnanomaterials for cancer diagnosis: A review
7
作者 Zhengying Peng Pengkun Yin +5 位作者 Dan Li Youyuan Chen Kaiqiang Shu Qingwen Fan Yixiang Duan Qingyu Lin 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期1-27,共27页
Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue pen... Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis. 展开更多
关键词 Laser spectroscopy tumor imaging tumor diagnosis NANOMATERIALS
下载PDF
Exploring impedance spectrum for lithium-ion batteries diagnosis and prognosis:A comprehensive review
8
作者 Xinghao Du Jinhao Meng +2 位作者 Yassine Amirat Fei Gao Mohamed Benbouzid 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期464-483,I0010,共21页
Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis... Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed. 展开更多
关键词 Lithium-ion battery Impedance spectrum Temperature monitoring Failure diagnosis Health prognosis
下载PDF
Clinical significance of peripheral blood UL16 and DR-70 for the early diagnosis and prognostic evaluation of colorectal cancer
9
作者 Zhi-Ping Zong Chen Wu 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3832-3838,共7页
BACKGROUND Early diagnosis of colorectal cancer(CRC)is of great significance to improve the survival rate and quality of life of patients,but early diagnosis of CRC requires more sensitive techniques.Peripheral blood ... BACKGROUND Early diagnosis of colorectal cancer(CRC)is of great significance to improve the survival rate and quality of life of patients,but early diagnosis of CRC requires more sensitive techniques.Peripheral blood UL16-binding protein 2(ULBP2)and human fibrinogen degradation products(DR-70)are the main indicators for the diagnosis of malignant tumors.AIM To assess ULBP2 and DR-70 potential for the early diagnosis and prognostic evaluation of CRC to provide a reference.METHODS This study involved 60 patients with early-stage CRC(CRC group),50 patients with benign colorectal tumors(benign group),and 50 healthy patients(control group)enrolled at the Affiliated Hospital of Jiangnan University and Jiangsu Province Official Hospital between January,2020 and January,2022.ULBP2 and DR-70 levels in the blood were determined and differences among the three groups and early diagnostic values for CRC were determined.Patients with CRC were divided into the good prognosis and poor prognosis groups,and ULBP2 and DR-70 levels in the blood and diagnostic values were compared.RESULTS ULBP2 and DR-70 serum levels were significantly higher in the CRC group than in the control and benign groups(P<0.05);however,no significant differences were observed between the benign and control groups(P>0.05).Among the 60 patients with CRC followed up for two years,two died(3.33%)and 15 exhibited tumor metastasis,progression,or recurrence(25.00%).ULBP2 and DR-70 serum levels were significantly higher in the poor prognosis group than in the good prognosis group(P<0.05).A receiver operating characteristic curve was plotted.Area under the curve,sensitivity,and specificity of serum ULBP2 with DR-70 for the early diagnosis of CRC were higher than those of the single serum indices(P<0.05)in both the good and poor prognosis groups.CONCLUSION ULBP2 and DR-70 serum levels were significantly high in patients with early-stage CRC.They improved the diagnostic rate of early-stage CRC and predicted patient prognosis,thereby showing clinical application potential. 展开更多
关键词 ULBP2 DR-70 Colorectal cancer Early diagnosis PROGNOSIS
下载PDF
RepBoTNet-CESA:An Alzheimer’s Disease Computer Aided Diagnosis Method Using Structural Reparameterization BoTNet and Cubic Embedding Self Attention
10
作者 Xiabin Zhang Zhongyi Hu +1 位作者 Lei Xiao Hui Huang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2879-2905,共27页
Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease(AD).Most studies predominantly employ Convolutional Neural Networks(CNNs),which focus solely on l... Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease(AD).Most studies predominantly employ Convolutional Neural Networks(CNNs),which focus solely on local features,thus encountering difficulties in handling global features.In contrast to natural images,Structural Magnetic Resonance Imaging(sMRI)images exhibit a higher number of channel dimensions.However,during the Position Embedding stage ofMulti Head Self Attention(MHSA),the coded information related to the channel dimension is disregarded.To tackle these issues,we propose theRepBoTNet-CESA network,an advanced AD-aided diagnostic model that is capable of learning local and global features simultaneously.It combines the advantages of CNN networks in capturing local information and Transformer networks in integrating global information,reducing computational costs while achieving excellent classification performance.Moreover,it uses the Cubic Embedding Self Attention(CESA)proposed in this paper to incorporate the channel code information,enhancing the classification performance within the Transformer structure.Finally,the RepBoTNet-CESA performs well in various AD-aided diagnosis tasks,with an accuracy of 96.58%,precision of 97.26%,and recall of 96.23%in the AD/NC task;an accuracy of 92.75%,precision of 92.84%,and recall of 93.18%in the EMCI/NC task;and an accuracy of 80.97%,precision of 83.86%,and recall of 80.91%in the AD/EMCI/LMCI/NC task.This demonstrates that RepBoTNet-CESA delivers outstanding outcomes in various AD-aided diagnostic tasks.Furthermore,our study has shown that MHSA exhibits superior performance compared to conventional attention mechanisms in enhancing ResNet performance.Besides,the Deeper RepBoTNet-CESA network fails to make further progress in AD-aided diagnostic tasks. 展开更多
关键词 Alzheimer CNN structural reparameterization multi head self attention computer aided diagnosis
下载PDF
Machine learning for parameters diagnosis of spark discharge by electro-acoustic signal
11
作者 熊俊 卢诗宇 +3 位作者 刘晓明 周文俊 查晓明 裴学凯 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期64-72,共9页
Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less com... Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less complex source of discharge information.This study harnesses machine learning to decode these signals.It establishes links between electro-acoustic signals and gas discharge parameters,such as power and distance,thus streamlining the prediction process.By building a spark discharge platform to collect electro-acoustic signals and implementing a series of acoustic signal processing techniques,the Mel-Frequency Cepstral Coefficients(MFCCs)of the acoustic signals are extracted to construct the predictors.Three machine learning models(Linear Regression,k-Nearest Neighbors,and Random Forest)are introduced and applied to the predictors to achieve real-time rapid diagnostic measurement of typical spark discharge power and discharge distance.All models display impressive performance in prediction precision and fitting abilities.Among them,the k-Nearest Neighbors model shows the best performance on discharge power prediction with the lowest mean square error(MSE=0.00571)and the highest R-squared value(R^(2)=0.93877).The experimental results show that the relationship between the electro-acoustic signal and the gas discharge power and distance can be effectively constructed based on the machine learning algorithm,which provides a new idea and basis for the online monitoring and real-time diagnosis of plasma parameters. 展开更多
关键词 discharge plasma plasma real-time diagnosis electro-acoustic signal machine learning acoustic signature
下载PDF
Non-participation of asymptomatic candidates in screening protocols reduces early diagnosis and worsens prognosis of colorectal cancer
12
作者 Sergio Pérez-Holanda 《World Journal of Gastroenterology》 SCIE CAS 2024年第26期3198-3200,共3页
The Agatsuma et al’s study shows that despite the evidence of the benefits of an early colorectal cancer(CRC)diagnosis,through screening in asymptomatic subjects,up to 50%of candidates reject this option and many of ... The Agatsuma et al’s study shows that despite the evidence of the benefits of an early colorectal cancer(CRC)diagnosis,through screening in asymptomatic subjects,up to 50%of candidates reject this option and many of those affected are diagnosed later,in advanced stages.The efficacy of screening programs has been well-established for several years,which reduces the risk of CRC morbidity and mortality,without taking into account the test used for screening,or other tools.Nevertheless,a significant proportion of patients remain unscreened,so understanding the factors involved,as well as the barriers of the population to adherence is the first step to possibly modify the participation rate.These barriers could include a full range of social and political aspects,especially the type of financial provision of each health service.In Japan,health services are universal,and this advantageous situation makes it easier for citizens to access to these services,contributing to the detection of various diseases,including CRC.Interestingly,the symptomatic CRC group had a lower early-stage diagnosis rate than the patients detected during follow-up for other comorbidities,and symptomatic and cancer screening groups showed similar early-stage diagnosis. 展开更多
关键词 Colorectal neoplasms Cancer registry Diagnostic route Cancer screening Stage at diagnosis
下载PDF
Utility of plasma D-dimer for diagnosis of venous thromboembolism after hepatectomy
13
作者 Taiichiro Miyake Hiroaki Yanagimoto +16 位作者 Daisuke Tsugawa Masayuki Akita Riki Asakura Keisuke Arai Toshihiko Yoshida Shinichi So Jun Ishida Takeshi Urade Yoshihide Nanno Kenji Fukushima Hidetoshi Gon Shohei Komatsu Sadaki Asari Hirochika Toyama Masahiro Kido Tetsuo Ajiki Takumi Fukumoto 《World Journal of Clinical Cases》 SCIE 2024年第2期276-284,共9页
BACKGROUND Venous thromboembolism(VTE)is a potentially fatal complication of hepatectomy.The use of postoperative prophylactic anticoagulation in patients who have undergone hepatectomy is controversial because of the... BACKGROUND Venous thromboembolism(VTE)is a potentially fatal complication of hepatectomy.The use of postoperative prophylactic anticoagulation in patients who have undergone hepatectomy is controversial because of the risk of postoperative bleeding.Therefore,we hypothesized that monitoring plasma D-dimer could be useful in the early diagnosis of VTE after hepatectomy.AIM To evaluate the utility of monitoring plasma D-dimer levels in the early diagnosis of VTE after hepatectomy.METHODS The medical records of patients who underwent hepatectomy at our institution between January 2017 and December 2020 were retrospectively analyzed.Patients were divided into two groups according to whether or not they developed VTE after hepatectomy,as diagnosed by contrast-enhanced computed tomography and/or ultrasonography of the lower extremities.Clinicopathological factors,including demographic data and perioperative D-dimer values,were compared between the two groups.Receiver operating characteristic curve analysis was performed to determine the D-dimer cutoff value.Univariate and multivariate analyses were performed using logistic regression analysis to identify significant predictors.RESULTS In total,234 patients who underwent hepatectomy were,of whom(5.6%)were diagnosed with VTE following hepatectomy.A comparison between the two groups showed significant differences in operative time(529 vs 403 min,P=0.0274)and blood loss(530 vs 138 mL,P=0.0067).The D-dimer levels on postoperative days(POD)1,3,5,7 were significantly higher in the VTE group than in the non-VTE group.In the multivariate analysis,intraoperative blood loss of>275 mL[odds ratio(OR)=5.32,95%confidence interval(CI):1.05-27.0,P=0.044]and plasma D-dimer levels on POD 5≥21μg/mL(OR=10.1,95%CI:2.04-50.1,P=0.0046)were independent risk factors for VTE after hepatectomy.CONCLUSION Monitoring of plasma D-dimer levels after hepatectomy is useful for early diagnosis of VTE and may avoid routine prophylactic anticoagulation in the postoperative period. 展开更多
关键词 HEPATEctOMY Malignant tumor Postoperative complication D-DIMER Early diagnosis Venous thromboembolism
下载PDF
Data-driven diagnosis of high temperature PEM fuel cells based on the electrochemical impedance spectroscopy: Robustness improvement and evaluation
14
作者 Dan Yu Xingjun Li +2 位作者 Samuel Simon Araya Simon Lennart Sahlin Vincenzo Liso 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期544-558,共15页
Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a cr... Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application. 展开更多
关键词 PEM fuel cell Data-driven diagnosis Robustness improvement and evaluation Electrochemical impedance spectroscopy
下载PDF
Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies
15
作者 Dian Jiao Lai Xu +3 位作者 Zhen Gu Hua Yan Dingding Shen Xiaosong Gu 《Neural Regeneration Research》 SCIE CAS 2025年第4期917-935,共19页
Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The ... Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression,protein expression,ion channel activity,energy metabolites,and gut microbiota composition.Satisfactory results are lacking for conventional treatments for epilepsy.Surgical resection of lesions,drug therapy,and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy.Non-pharmacological treatments,such as a ketogenic diet,gene therapy for nerve regeneration,and neural regulation,are currently areas of research focus.This review provides a comprehensive overview of the pathogenesis,diagnostic methods,and treatments of epilepsy.It also elaborates on the theoretical basis,treatment modes,and effects of invasive nerve stimulation in neurotherapy,including percutaneous vagus nerve stimulation,deep brain electrical stimulation,repetitive nerve electrical stimulation,in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation.Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures.Additionally,many new technologies for the diagnosis and treatment of epilepsy are being explored.However,current research is mainly focused on analyzing patients’clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level,which has led to a lack of consensus regarding the mechanisms related to the disease. 展开更多
关键词 diagnosis drug treatment ELEctROENCEPHALOGRAPHY epilepsy monitoring EPILEPSY nerve regeneration NEUROSTIMULATION non-drug interventions PATHOGENESIS prediction
下载PDF
Early diagnosis of esophageal cancer:How to put“early detection”into effect?
16
作者 Suolang Pubu Jun-Wen Zhang Jian Yang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第8期3386-3392,共7页
This editorial comments on the article by Qu et al in a recent edition of World Journal of Gastrointestinal Oncology,focusing on the importance of early diagnosis in managing esophageal cancer and strategies for achie... This editorial comments on the article by Qu et al in a recent edition of World Journal of Gastrointestinal Oncology,focusing on the importance of early diagnosis in managing esophageal cancer and strategies for achieving“early detection”.The five-year age-standardized net survival for esophageal cancer patients falls short of expectations.Early detection and accurate diagnosis are critical strategies for improving the treatment outcomes of esophageal cancer.While advancements in endoscopic technology have been significant,there seems to be an excessive emphasis on the latest high-end endoscopic devices and various endoscopic resection techniques.Therefore,it is imperative to redirect focus towards proactive early detection strategies for esophageal cancer,investigate the most cost-effective screening methods suitable for different regions,and persistently explore practical solutions to improve the five-year survival rate of patients with esophageal cancer. 展开更多
关键词 Esophageal cancer Early diagnosis Early detection Iodine staining Five-year survival rate
下载PDF
Key Issues for Modelling, Operation, Management and Diagnosis of Lithium Batteries: Current States and Prospects
17
作者 Bo Yang Yucun Qian +2 位作者 Jianzhong Xu Yaxing Ren Yixuan Chen 《Energy Engineering》 EI 2024年第8期2085-2091,共7页
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to... 1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5]. 展开更多
关键词 Lithium batteries optimization operation MODELLING state estimation life prediction fault diagnosis
下载PDF
Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection
18
作者 Muhammad Armghan Latif Zohaib Mushtaq +6 位作者 Saad Arif Sara Rehman Muhammad Farrukh Qureshi Nagwan Abdel Samee Maali Alabdulhafith Yeong Hyeon Gu Mohammed A.Al-masni 《Computers, Materials & Continua》 SCIE EI 2024年第3期4225-4241,共17页
Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland.Accurate and timely diagnosis of these d... Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland.Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care.This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques.Sequential forward feature selection,sequential backward feature elimination,and bidirectional feature elimination are investigated in this study.In ensemble learning,random forest,adaptive boosting,and bagging classifiers are employed.The effectiveness of these techniques is evaluated using two different datasets obtained from the University of California Irvine-Machine Learning Repository,both of which undergo preprocessing steps,including outlier removal,addressing missing data,data cleansing,and feature reduction.Extensive experimentation demonstrates the remarkable success of proposed ensemble stacking and bidirectional feature elimination achieving 100%and 99.86%accuracy in identifying hyperthyroidism and hypothyroidism,respectively.Beyond enhancing detection accuracy,the ensemble stacking model also demonstrated a streamlined computational complexity which is pivotal for practical medical applications.It significantly outperformed existing studies with similar objectives underscoring the viability and effectiveness of the proposed scheme.This research offers an innovative perspective and sets the platform for improved thyroid disorder diagnosis with broader implications for healthcare and patient well-being. 展开更多
关键词 Ensemble learning random forests BOOSTING dimensionality reduction machine learning smart healthcare computer aided diagnosis
下载PDF
Fault diagnosis method of link control system for gravitational wave detection
19
作者 GAO Ai XU Shengnan +2 位作者 ZHAO Zichen SHANG Haibin XU Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期922-931,共10页
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen... To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm. 展开更多
关键词 large scale multi-satellite formation gravitational wave detection laser link monitoring fault diagnosis deep learning
下载PDF
Differential diagnosis of Crohn’s disease and intestinal tuberculosis based on ATR-FTIR spectroscopy combined with machine learning
20
作者 Yuan-Peng Li Tian-Yu Lu +5 位作者 Fu-Rong Huang Wei-Min Zhang Zhen-Qiang Chen Pei-Wen Guang Liang-Yu Deng Xin-Hao Yang 《World Journal of Gastroenterology》 SCIE CAS 2024年第10期1377-1392,共16页
BACKGROUND Crohn’s disease(CD)is often misdiagnosed as intestinal tuberculosis(ITB).However,the treatment and prognosis of these two diseases are dramatically different.Therefore,it is important to develop a method t... BACKGROUND Crohn’s disease(CD)is often misdiagnosed as intestinal tuberculosis(ITB).However,the treatment and prognosis of these two diseases are dramatically different.Therefore,it is important to develop a method to identify CD and ITB with high accuracy,specificity,and speed.AIM To develop a method to identify CD and ITB with high accuracy,specificity,and speed.METHODS A total of 72 paraffin wax-embedded tissue sections were pathologically and clinically diagnosed as CD or ITB.Paraffin wax-embedded tissue sections were attached to a metal coating and measured using attenuated total reflectance fourier transform infrared spectroscopy at mid-infrared wavelengths combined with XGBoost for differential diagnosis.RESULTS The results showed that the paraffin wax-embedded specimens of CD and ITB were significantly different in their spectral signals at 1074 cm^(-1) and 1234 cm^(-1) bands,and the differential diagnosis model based on spectral characteristics combined with machine learning showed accuracy,specificity,and sensitivity of 91.84%,92.59%,and 90.90%,respectively,for the differential diagnosis of CD and ITB.CONCLUSION Information on the mid-infrared region can reveal the different histological components of CD and ITB at the molecular level,and spectral analysis combined with machine learning to establish a diagnostic model is expected to become a new method for the differential diagnosis of CD and ITB. 展开更多
关键词 Infrared spectroscopy Machine learning Intestinal tuberculosis Crohn’s disease Differential diagnosis Inflammatory bowel disease
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部