期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型
被引量:
43
1
作者
王根生
黄学坚
《小型微型计算机系统》
CSCD
北大核心
2019年第5期1120-1126,共7页
针对传统机器学习文本分类算法语义特征表达弱、文本表示维度高、词序丢失、矩阵稀疏等问题,提出基于Word2vec、改进型TF-IDF和卷积神经网络三者相结合的文本分类模型(CTMWT):首先通过Word2vec模型训练得出样本中所有的词向量;然后提出...
针对传统机器学习文本分类算法语义特征表达弱、文本表示维度高、词序丢失、矩阵稀疏等问题,提出基于Word2vec、改进型TF-IDF和卷积神经网络三者相结合的文本分类模型(CTMWT):首先通过Word2vec模型训练得出样本中所有的词向量;然后提出基于类频方差改进型TF-IDF算法,分析每个词向量在文本中的权重,构建基于词向量和权重的文本向量表示;最后借助卷积神经网络从局部到全局相关性特征的学习能力,对该大量文本向量进行深度学习.试验结果表明三者结合的文本分类模型不仅能实现文本的准确分类,并且相比传统的机器学习文本分类算法具有更好的分类效果.
展开更多
关键词
Word2vec
改进型TF-IDF算法
卷积神经网络
文本分类
ctmwt
下载PDF
职称材料
题名
基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型
被引量:
43
1
作者
王根生
黄学坚
机构
江西财经大学计算机实践教学中心
江西财经大学国际经贸学院
江西财经大学人文学院
出处
《小型微型计算机系统》
CSCD
北大核心
2019年第5期1120-1126,共7页
基金
国家自然科学基金项目(71461012)资助
国家社会科学基金项目(17BXW059)资助
江西省高校人文社会科学研究一般项目(TQ1404)资助
文摘
针对传统机器学习文本分类算法语义特征表达弱、文本表示维度高、词序丢失、矩阵稀疏等问题,提出基于Word2vec、改进型TF-IDF和卷积神经网络三者相结合的文本分类模型(CTMWT):首先通过Word2vec模型训练得出样本中所有的词向量;然后提出基于类频方差改进型TF-IDF算法,分析每个词向量在文本中的权重,构建基于词向量和权重的文本向量表示;最后借助卷积神经网络从局部到全局相关性特征的学习能力,对该大量文本向量进行深度学习.试验结果表明三者结合的文本分类模型不仅能实现文本的准确分类,并且相比传统的机器学习文本分类算法具有更好的分类效果.
关键词
Word2vec
改进型TF-IDF算法
卷积神经网络
文本分类
ctmwt
Keywords
Word2vec
improved TF-IDF
convolution neural network
text classification
Convolution neural network Text classification Model based on Word2vec and improved TF-IDF
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型
王根生
黄学坚
《小型微型计算机系统》
CSCD
北大核心
2019
43
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部