The connection characteristics of rapidly solidified Cu-40%Co alloy foils were studied using a self-developed micro-type energy-storage welding machine. The results show that the microstructure of the alloy foils is c...The connection characteristics of rapidly solidified Cu-40%Co alloy foils were studied using a self-developed micro-type energy-storage welding machine. The results show that the microstructure of the alloy foils is characterized by uni form and fine equiaxed grains,whose maximum grain size is 1.8 μm. Under the o ptimum energy,the regular flat nugget is formed,low voltage and high capacitan ce are favorable for obtaining the perfect connection joints,whereas high volta ge and low capacitance are likely to result in the surface burn of the alloy foi ls. With the increase of welding energy,the spot welding joint will be transfor med from regular flat nugget to nugget-free one,and the microstructure tends t o coarsen. The welding parameters recommended are: welding voltage 80100 V,(electric) capacitance 1 8002 500 μF,and welding force 48 N.展开更多
Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the ...Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the alloy generally has a microstructure consisting of a(Co,Cr)-rich phase embedded in a Cu-rich matrix,and the morphology and size of the(Co,Cr)-rich phase vary drastically with cooling rate.During the electromagnetic levitation solidification processing the cooling rate is lower,resulting in an obvious coalescence tendency of the(Co,Cr)-rich spheroids.The(Co,Cr)-rich phase shows dendrites and coarse spheroids at lower cooling rates.In the splat quenched samples the(Co,Cr)-rich phase spheres were refined significantly and no dendrites were observed.This is probably due to the higher cooling rate,undercooling and interface tension.展开更多
This research aims to extract Cu from Cu-Co alloy with high efficiency and selectivity by employing binary Mg-Pb melt. The optimal conditions for the extraction of Cu were determined. The results showed under optimal ...This research aims to extract Cu from Cu-Co alloy with high efficiency and selectivity by employing binary Mg-Pb melt. The optimal conditions for the extraction of Cu were determined. The results showed under optimal conditions, 96.5% of Cu in the Cu-Co alloy could be selectively extracted after treatment at 800 ℃ for 1 h, with the extraction rates of only 0.2% Fe, 0.6% Co, and 1.4% Si. The dissolution mechanism involved the counter diffusion of Mg/Pb and Cu across the diffusion zone of the Cu-Co alloy, and Mg in the binary Mg-Pb melt played a major role in the selective dissolution of Cu, especially at the dissolution forefront. The rate-controlling step of the extraction was dominated by the interfacial reaction.展开更多
The metastable liquid phase separation and rapid solidification behaviours of Co61.8Cu38.2 alloy were investigated by using differential thermal analysis (DTA) in combination with glass fluxing, electromagnetic levi...The metastable liquid phase separation and rapid solidification behaviours of Co61.8Cu38.2 alloy were investigated by using differential thermal analysis (DTA) in combination with glass fluxing, electromagnetic levitation (EML) and drop tube techniques. It is found that the liquid phase separation process and the solidification microstructures intensively depend on the experimental processing parameters, such as undercooling level, cooling rate, gravity level, liquid surface tension and the wetting state of crucible. Large undercooling and surface tension difference of the two liquids tend to facilitate further separation and cause severe macrosegregation. On the other hand, rapid cooling and low gravity effectively suppress the coalescence of the minority phase, Severe maerosegregation patterns are formed in the bulk samples processed by both DTA and EML. In contrast, disperse structures with fine spherical Cu-rich spheres homogeneously distributed in the matrix of Co-rich phase have been obtained in drop tube.展开更多
文摘The connection characteristics of rapidly solidified Cu-40%Co alloy foils were studied using a self-developed micro-type energy-storage welding machine. The results show that the microstructure of the alloy foils is characterized by uni form and fine equiaxed grains,whose maximum grain size is 1.8 μm. Under the o ptimum energy,the regular flat nugget is formed,low voltage and high capacitan ce are favorable for obtaining the perfect connection joints,whereas high volta ge and low capacitance are likely to result in the surface burn of the alloy foi ls. With the increase of welding energy,the spot welding joint will be transfor med from regular flat nugget to nugget-free one,and the microstructure tends t o coarsen. The welding parameters recommended are: welding voltage 80100 V,(electric) capacitance 1 8002 500 μF,and welding force 48 N.
基金Projects(51171152,50871088) supported by the National Natural Science Foundation of ChinaProject(20126102110048) supported by Doctoral Fund of Ministry of Education of China+2 种基金Project(SKLSP201202) supported by Foundation of State Key Laboratory of Solidification,ChinaProject(2012JC2-02) supported by Natural Science Basic Research Plan in Shaanxi Province,ChinaProject (JC201268) supported by the NPU Foundation for Fundamental Research,China
文摘Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the alloy generally has a microstructure consisting of a(Co,Cr)-rich phase embedded in a Cu-rich matrix,and the morphology and size of the(Co,Cr)-rich phase vary drastically with cooling rate.During the electromagnetic levitation solidification processing the cooling rate is lower,resulting in an obvious coalescence tendency of the(Co,Cr)-rich spheroids.The(Co,Cr)-rich phase shows dendrites and coarse spheroids at lower cooling rates.In the splat quenched samples the(Co,Cr)-rich phase spheres were refined significantly and no dendrites were observed.This is probably due to the higher cooling rate,undercooling and interface tension.
基金funded by the National Natural Science Foundation of China(Nos.51904350,51874371)the Hunan Natural Science Foundation,China(No.2021JJ30854).
文摘This research aims to extract Cu from Cu-Co alloy with high efficiency and selectivity by employing binary Mg-Pb melt. The optimal conditions for the extraction of Cu were determined. The results showed under optimal conditions, 96.5% of Cu in the Cu-Co alloy could be selectively extracted after treatment at 800 ℃ for 1 h, with the extraction rates of only 0.2% Fe, 0.6% Co, and 1.4% Si. The dissolution mechanism involved the counter diffusion of Mg/Pb and Cu across the diffusion zone of the Cu-Co alloy, and Mg in the binary Mg-Pb melt played a major role in the selective dissolution of Cu, especially at the dissolution forefront. The rate-controlling step of the extraction was dominated by the interfacial reaction.
文摘The metastable liquid phase separation and rapid solidification behaviours of Co61.8Cu38.2 alloy were investigated by using differential thermal analysis (DTA) in combination with glass fluxing, electromagnetic levitation (EML) and drop tube techniques. It is found that the liquid phase separation process and the solidification microstructures intensively depend on the experimental processing parameters, such as undercooling level, cooling rate, gravity level, liquid surface tension and the wetting state of crucible. Large undercooling and surface tension difference of the two liquids tend to facilitate further separation and cause severe macrosegregation. On the other hand, rapid cooling and low gravity effectively suppress the coalescence of the minority phase, Severe maerosegregation patterns are formed in the bulk samples processed by both DTA and EML. In contrast, disperse structures with fine spherical Cu-rich spheres homogeneously distributed in the matrix of Co-rich phase have been obtained in drop tube.