The stabilization of thermoelastic martensite in a rapidly solidified Cu-Zn-A1 alloy is be- lieved to be the process of disordering in atomic configuration during which the structure of martensite gradually transforms...The stabilization of thermoelastic martensite in a rapidly solidified Cu-Zn-A1 alloy is be- lieved to be the process of disordering in atomic configuration during which the structure of martensite gradually transforms into N9R(b/a=1/3^(1/2))from M18R.This is dependent upon the intrinsic decomposition tendency of the martensite.展开更多
The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations...The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations show that the interfaces between 24 martensite variants have different reaction to applied stress. The A/C type and A/B type interfaces have good mobil-ity, the A/D type interface has bad mobiIity, and the different-group-intervariant interfaces are basically immobile.展开更多
A TTT diagram for th ie precipitation formed at some intermediate temperatures through cooling from high lemperalure parenl phase in a Cu-27 27Zn-3.73Al allay is established by means of dilatormetric measurement.The m...A TTT diagram for th ie precipitation formed at some intermediate temperatures through cooling from high lemperalure parenl phase in a Cu-27 27Zn-3.73Al allay is established by means of dilatormetric measurement.The morphology and structure of transformation products formed at some intermediate tem peratures isothermally through cooling from high temperature parent phase and up-quenching from DO_(3) parent phase are studied by metallographic.X-ray and electron microscopy analyses.Three regions in the two separate C curves are obtained according to different morphology of precipitate:rod-like a,plate-like bainite and a rods,and bainite plates.Prolonged aging makes bainite plate change gradually into a whose lattice parameters are no different from that of a formed equilibriumly from parent phase.The structure is almost orthorhombic long period structure for bainites formed from B_(2) and DO_(3) parent phase,but monoclinic for martensite from DO_(3).They correspond to the overlapping and separating of(1210)and(2010)diffraction peaks respectively,showing the lower degree of ordering in bainite.展开更多
Cu-Zn-Al alloy of one dimensional nano-structure was prepared and thestructure of obtained nano-material was characterized by transmission electron microscope (TEM). Itwas shown that there are non-linear oscillations ...Cu-Zn-Al alloy of one dimensional nano-structure was prepared and thestructure of obtained nano-material was characterized by transmission electron microscope (TEM). Itwas shown that there are non-linear oscillations on the surface of Cu-Zn-Al alloy and theconsanguineous connection exists between non-linear oscillation and the growth process of onedimensional nano-structure. The diameter of one dimensional nano-structure is about 40 nm, and theratio of length to diameter is over 40. Finally, the growth mechanism of one dimensionalnano-structure was also studied.展开更多
The correlation between the shape memory effect(SME)and the ordering degree in martensite formed through various heat-treatment processes,e.g.ice water quenching, step-quenching and aging etc.,has been studied in a Cu...The correlation between the shape memory effect(SME)and the ordering degree in martensite formed through various heat-treatment processes,e.g.ice water quenching, step-quenching and aging etc.,has been studied in a Cu-26Zn-4Al alloy.The martensite or- dering degree is estimated by △d,the spacing difference of some pairs of diffracting planes with indices satisfying a relation of(h_1~2-h_2~2)/3=(k_2~2-k_1~2)/n(n=1 for 9R martensite,n=4 for 18R martensite).M 18R martensite is obtained from step-quenching,in which the value of △d increases with the holding duration of step-quenching,and the shape recovery rate η increases synchronouslly.9R martensite is obtained from direct water-quenching,the value of △d is quite large and SME is also good at just quenching state.But both △d and η decrease continuously with aging time at room temperature.This stabilization phe- nomenon of martensite is explained by the observation of TEM lattice fringe image,and it may be attributed to the clustering of quenched-in supersaturated vacancies at (001)_M close-packed plane in martensite and decreasing the ordering degree.A reduction in △d and η occuring in the specimens on step-quenching or aging at higher temperature, which may be related to the precipitation of the α-phase and the enrichment of solute atoms, decreases the ordering degree.展开更多
The crossed micro-bands in the martensite variant pairs of a thermomechanically trained Cu25.66Zn-4.02Al (wt-%) alloy have been studied. It was found that the micro-bands pass through the interface from one martensite...The crossed micro-bands in the martensite variant pairs of a thermomechanically trained Cu25.66Zn-4.02Al (wt-%) alloy have been studied. It was found that the micro-bands pass through the interface from one martensite variant to another and their orientation inside different variants is distinct, which would remain in the parent phase after the reverse transformation and play an important role in the formation of preferential martensite. In fact, the crossed micro-bands are micro-twins for accommodating the stress fields generated during thermomechanically training展开更多
A new kind of planar defect named non-basal plane stacking faults has been studied by using trace analysis and lattice image techniques.It has been found that they are located in (125)_M plane of martensite lattice.By...A new kind of planar defect named non-basal plane stacking faults has been studied by using trace analysis and lattice image techniques.It has been found that they are located in (125)_M plane of martensite lattice.By lattice image observation,the non-basal plane stack- ing faults are argued to be induced by two incomplete basal plane stacking faults and may be the results of rapid quenching.The defects are regarded as anomalous structures of martensite.展开更多
The crystallographic nature of initial isothermal phase transformation in Cu-26Zn-4Al (wt-%) was investigated. The kinetic transforma- tion curve, morphology, crystal structure, substructure, orientation relationship...The crystallographic nature of initial isothermal phase transformation in Cu-26Zn-4Al (wt-%) was investigated. The kinetic transforma- tion curve, morphology, crystal structure, substructure, orientation relationship and twin relationship of bainite plates have been studied by means of optical and transmission electron microscopy. The experimental results showed that the characteristics of initial 8→bainite transformation are not exactly consistent with that found in martensite transformation, for example, orientation relationship between matrix and bainite does not exist in martensite transformation.展开更多
TTT diagrams and kinetics curves of bainite formation through up quenching from martensitic slate and of dilatometry and cooling from high temperature parent phase in Cu-Zn-Al alloys are established by ments of dilato...TTT diagrams and kinetics curves of bainite formation through up quenching from martensitic slate and of dilatometry and cooling from high temperature parent phase in Cu-Zn-Al alloys are established by ments of dilatometry and metallographic inspection.Experimental results show that the kinetics characteristics of bainite formation obey the Austin-Rickett Equation with n=2.25 for up-quenched specimens and n=1.80 for specimens cooled from high temperature,and the activation energy of bainite formation is about.110 kJ/mol,corresponding to that ofthe diffusion of solute atoms.展开更多
Detailed crystallographic analysis has been undertaken on the various combinations Of 24 martensite variants in the 18R martensite of a Cu-Zn-Al shape memory alloy. Based upon the calculated crystallographic data, the...Detailed crystallographic analysis has been undertaken on the various combinations Of 24 martensite variants in the 18R martensite of a Cu-Zn-Al shape memory alloy. Based upon the calculated crystallographic data, the interface energy of different twin interfaces was calculated using a lowangle-grain-interface model. For the variant/variant pairs in a self-accommodating group. the A/C type and A/B type interfaces have low interface energy, and A/D type interface is an intermediate one. In contrast, the intervariant interfaces that belong to different plate groups have high intrface energy. The calculated results are consiStent with the previous observations of the mobility of intervariant interfaces.展开更多
The bainite structure in a Cu-Zn-A1 alloy related to the reverse shape memory effect has been observed by means of TEM.The reverse memory effect may be improved by up to one order of magnitude under applied constraint...The bainite structure in a Cu-Zn-A1 alloy related to the reverse shape memory effect has been observed by means of TEM.The reverse memory effect may be improved by up to one order of magnitude under applied constraint stress.The widespread propagation of bainite was confirmed to be the diffusion controlled shear process by the parabolic configuration of side interface of bainite plate and the twisting of intersected bainite plates.展开更多
The ordering of bainite is studied and compared with that of martensite in a Cu-20Zn-6Al(wt—%) alloy by X-ray analysis. Experilnental results show that in contrast with the diffraction pattern for 9R or 18R martensi...The ordering of bainite is studied and compared with that of martensite in a Cu-20Zn-6Al(wt—%) alloy by X-ray analysis. Experilnental results show that in contrast with the diffraction pattern for 9R or 18R martensite, in which the (115) diffraction peak is distinguishable from the (■ 0 5), and the (1 2 10) from the (2 0 10), the (1 1 5) and (■ 0 5) or the (1 2 10) and (■0 10) diffraction peaks in the bainites formed from high temperature B2 or low temperature L2 parent phase overlap, and these phenomena do not change after prolonged aging or slow-cooling. The bainite structure is quite different from that of the martensite, i. e., the inheritance of the ordering of the parent phase would not occur, during bainite formation.展开更多
The A/D type twin boundary in a Cu-Zn-Al shape memory alloy appears curved under TEM and shows irregularly serrated steps under HREM. Crystallographic analysis shows that the macroscopic curve results from non-self-ac...The A/D type twin boundary in a Cu-Zn-Al shape memory alloy appears curved under TEM and shows irregularly serrated steps under HREM. Crystallographic analysis shows that the macroscopic curve results from non-self-accommodation of the boundary, the deviation from exact twin orientation and a preferential orientation for lower boundary energy.展开更多
When observing the Cu-Zn-Al alloy, which has been treated in mixed acid and etching reagent in normal temperature and pressure, a nanotube in novel structure and shape is found. It is a single-wall nanotube with smoot...When observing the Cu-Zn-Al alloy, which has been treated in mixed acid and etching reagent in normal temperature and pressure, a nanotube in novel structure and shape is found. It is a single-wall nanotube with smooth surface, on which there is basically no absorbate. It is verified through transmission electron microscope (TEM) that the dislocation lines are observed on the nanotube. Structural analysis reveals that the mechanics of nanotube generation is in relation to "quasi-fluid state" that exists in the alloy. The solid "quasi-fluid state" is the research result of Mr. Gao and his colleagues over ten years. It is a new material that exists besides gas, liquid, solid, and liquid crystal.展开更多
Type H defect in 18R martensite in a Cu-Zn-Al alloy has been studied by high resolution electron microscopy. It was found that Type H defect is not fault internal to martensite plate; rather,it is a stack of plates A ...Type H defect in 18R martensite in a Cu-Zn-Al alloy has been studied by high resolution electron microscopy. It was found that Type H defect is not fault internal to martensite plate; rather,it is a stack of plates A and C. The rare observation of Type H defect is considered to be due to the fact that thc slice is too thin to exist for self-accommodation.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ...This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.展开更多
文摘The stabilization of thermoelastic martensite in a rapidly solidified Cu-Zn-A1 alloy is be- lieved to be the process of disordering in atomic configuration during which the structure of martensite gradually transforms into N9R(b/a=1/3^(1/2))from M18R.This is dependent upon the intrinsic decomposition tendency of the martensite.
文摘The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations show that the interfaces between 24 martensite variants have different reaction to applied stress. The A/C type and A/B type interfaces have good mobil-ity, the A/D type interface has bad mobiIity, and the different-group-intervariant interfaces are basically immobile.
基金supported by the National Natural Science Foundation
文摘A TTT diagram for th ie precipitation formed at some intermediate temperatures through cooling from high lemperalure parenl phase in a Cu-27 27Zn-3.73Al allay is established by means of dilatormetric measurement.The morphology and structure of transformation products formed at some intermediate tem peratures isothermally through cooling from high temperature parent phase and up-quenching from DO_(3) parent phase are studied by metallographic.X-ray and electron microscopy analyses.Three regions in the two separate C curves are obtained according to different morphology of precipitate:rod-like a,plate-like bainite and a rods,and bainite plates.Prolonged aging makes bainite plate change gradually into a whose lattice parameters are no different from that of a formed equilibriumly from parent phase.The structure is almost orthorhombic long period structure for bainites formed from B_(2) and DO_(3) parent phase,but monoclinic for martensite from DO_(3).They correspond to the overlapping and separating of(1210)and(2010)diffraction peaks respectively,showing the lower degree of ordering in bainite.
基金This work was financially supported by the National Climbing Programme of China (No. 1999-444)the Natural Science Foundation of Tianjin (No.003805611 and 033610611) the Center of Liuhui Application Mathematics of Nankai University and Tianjin Univers
文摘Cu-Zn-Al alloy of one dimensional nano-structure was prepared and thestructure of obtained nano-material was characterized by transmission electron microscope (TEM). Itwas shown that there are non-linear oscillations on the surface of Cu-Zn-Al alloy and theconsanguineous connection exists between non-linear oscillation and the growth process of onedimensional nano-structure. The diameter of one dimensional nano-structure is about 40 nm, and theratio of length to diameter is over 40. Finally, the growth mechanism of one dimensionalnano-structure was also studied.
文摘The correlation between the shape memory effect(SME)and the ordering degree in martensite formed through various heat-treatment processes,e.g.ice water quenching, step-quenching and aging etc.,has been studied in a Cu-26Zn-4Al alloy.The martensite or- dering degree is estimated by △d,the spacing difference of some pairs of diffracting planes with indices satisfying a relation of(h_1~2-h_2~2)/3=(k_2~2-k_1~2)/n(n=1 for 9R martensite,n=4 for 18R martensite).M 18R martensite is obtained from step-quenching,in which the value of △d increases with the holding duration of step-quenching,and the shape recovery rate η increases synchronouslly.9R martensite is obtained from direct water-quenching,the value of △d is quite large and SME is also good at just quenching state.But both △d and η decrease continuously with aging time at room temperature.This stabilization phe- nomenon of martensite is explained by the observation of TEM lattice fringe image,and it may be attributed to the clustering of quenched-in supersaturated vacancies at (001)_M close-packed plane in martensite and decreasing the ordering degree.A reduction in △d and η occuring in the specimens on step-quenching or aging at higher temperature, which may be related to the precipitation of the α-phase and the enrichment of solute atoms, decreases the ordering degree.
文摘The crossed micro-bands in the martensite variant pairs of a thermomechanically trained Cu25.66Zn-4.02Al (wt-%) alloy have been studied. It was found that the micro-bands pass through the interface from one martensite variant to another and their orientation inside different variants is distinct, which would remain in the parent phase after the reverse transformation and play an important role in the formation of preferential martensite. In fact, the crossed micro-bands are micro-twins for accommodating the stress fields generated during thermomechanically training
文摘A new kind of planar defect named non-basal plane stacking faults has been studied by using trace analysis and lattice image techniques.It has been found that they are located in (125)_M plane of martensite lattice.By lattice image observation,the non-basal plane stack- ing faults are argued to be induced by two incomplete basal plane stacking faults and may be the results of rapid quenching.The defects are regarded as anomalous structures of martensite.
文摘The crystallographic nature of initial isothermal phase transformation in Cu-26Zn-4Al (wt-%) was investigated. The kinetic transforma- tion curve, morphology, crystal structure, substructure, orientation relationship and twin relationship of bainite plates have been studied by means of optical and transmission electron microscopy. The experimental results showed that the characteristics of initial 8→bainite transformation are not exactly consistent with that found in martensite transformation, for example, orientation relationship between matrix and bainite does not exist in martensite transformation.
文摘TTT diagrams and kinetics curves of bainite formation through up quenching from martensitic slate and of dilatometry and cooling from high temperature parent phase in Cu-Zn-Al alloys are established by ments of dilatometry and metallographic inspection.Experimental results show that the kinetics characteristics of bainite formation obey the Austin-Rickett Equation with n=2.25 for up-quenched specimens and n=1.80 for specimens cooled from high temperature,and the activation energy of bainite formation is about.110 kJ/mol,corresponding to that ofthe diffusion of solute atoms.
文摘Detailed crystallographic analysis has been undertaken on the various combinations Of 24 martensite variants in the 18R martensite of a Cu-Zn-Al shape memory alloy. Based upon the calculated crystallographic data, the interface energy of different twin interfaces was calculated using a lowangle-grain-interface model. For the variant/variant pairs in a self-accommodating group. the A/C type and A/B type interfaces have low interface energy, and A/D type interface is an intermediate one. In contrast, the intervariant interfaces that belong to different plate groups have high intrface energy. The calculated results are consiStent with the previous observations of the mobility of intervariant interfaces.
文摘The bainite structure in a Cu-Zn-A1 alloy related to the reverse shape memory effect has been observed by means of TEM.The reverse memory effect may be improved by up to one order of magnitude under applied constraint stress.The widespread propagation of bainite was confirmed to be the diffusion controlled shear process by the parabolic configuration of side interface of bainite plate and the twisting of intersected bainite plates.
文摘The ordering of bainite is studied and compared with that of martensite in a Cu-20Zn-6Al(wt—%) alloy by X-ray analysis. Experilnental results show that in contrast with the diffraction pattern for 9R or 18R martensite, in which the (115) diffraction peak is distinguishable from the (■ 0 5), and the (1 2 10) from the (2 0 10), the (1 1 5) and (■ 0 5) or the (1 2 10) and (■0 10) diffraction peaks in the bainites formed from high temperature B2 or low temperature L2 parent phase overlap, and these phenomena do not change after prolonged aging or slow-cooling. The bainite structure is quite different from that of the martensite, i. e., the inheritance of the ordering of the parent phase would not occur, during bainite formation.
文摘The A/D type twin boundary in a Cu-Zn-Al shape memory alloy appears curved under TEM and shows irregularly serrated steps under HREM. Crystallographic analysis shows that the macroscopic curve results from non-self-accommodation of the boundary, the deviation from exact twin orientation and a preferential orientation for lower boundary energy.
文摘When observing the Cu-Zn-Al alloy, which has been treated in mixed acid and etching reagent in normal temperature and pressure, a nanotube in novel structure and shape is found. It is a single-wall nanotube with smooth surface, on which there is basically no absorbate. It is verified through transmission electron microscope (TEM) that the dislocation lines are observed on the nanotube. Structural analysis reveals that the mechanics of nanotube generation is in relation to "quasi-fluid state" that exists in the alloy. The solid "quasi-fluid state" is the research result of Mr. Gao and his colleagues over ten years. It is a new material that exists besides gas, liquid, solid, and liquid crystal.
文摘Type H defect in 18R martensite in a Cu-Zn-Al alloy has been studied by high resolution electron microscopy. It was found that Type H defect is not fault internal to martensite plate; rather,it is a stack of plates A and C. The rare observation of Type H defect is considered to be due to the fact that thc slice is too thin to exist for self-accommodation.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
基金funded by the National Natural Science Foundation of China(Nos.51801189)The Central Guidance on Local Science and Technology Development Fund of Shanxi Province(Nos.YDZJTSX2021A027)+2 种基金The National Natural Science Foundation of China(Nos.51801189)The Science and Technology Major Project of Shanxi Province(No.20191102008,20191102007)The North University of China Youth Academic Leader Project(No.11045505).
文摘This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.