Lead-free inorganic copper-silver-bismuth-halide materials have attracted more and more attention due to their environmental friendliness,high element abundance,and low cost.Here,we developed a strategy of one-step ga...Lead-free inorganic copper-silver-bismuth-halide materials have attracted more and more attention due to their environmental friendliness,high element abundance,and low cost.Here,we developed a strategy of one-step gas-solid-phase diffusioninduced reaction to fabricate a series of bandgap-tunable Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI bilayer films due to the atomic diffusion effect for the first time.By designing and regulating the sputtered Cu/Ag/Bi metal film thickness,the bandgap of Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI could be reduced from 2.06 to 1.78 eV.Solar cells with the structure of FTO/TiO_(2)/Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI/carbon were constructed,yielding a champion power conversion efficiency of 2.76%,which is the highest reported for this class of materials owing to the bandgap reduction and the peculiar bilayer structure.The current work provides a practical path for developing the next generation of efficient,stable,and environmentally friendly photovoltaic materials.展开更多
Low dimensional CuI nanomaterials were synthesized in microemulsions containing cyclohexane, Triton X 100, n pentanol and aqueous solution. The redox reaction took place in this system and the final products CuI were ...Low dimensional CuI nanomaterials were synthesized in microemulsions containing cyclohexane, Triton X 100, n pentanol and aqueous solution. The redox reaction took place in this system and the final products CuI were obtained. It′s found that the morphology of CuI could be influenced a great deal by the experimental parameters such as w0 (the molar ratio of water to surfactant), reactant concentration and the aging time. Hexagonal or shuttle like CuI flakes, nanoparticles and nanofibers could be prepared respectively under certain conditions.展开更多
A layered inner tunnel supramolecular compound 1, [(CuI) 2( o phen) 2], was hydrothermally synthesized and structurally characterized by X ray crystal diffraction. It crystallizes in triclinic system, space group P 1 ...A layered inner tunnel supramolecular compound 1, [(CuI) 2( o phen) 2], was hydrothermally synthesized and structurally characterized by X ray crystal diffraction. It crystallizes in triclinic system, space group P 1 with a =0.775 9(2) nm, b =0.907 0(2) nm, c =0.918 94(10) nm, α =96 306(14)°, β = 104.567(16)°, γ =109.421(19)°, V =0.576 8(2) nm 3, Z=1, R=0.034 8, wR =0.092 0.展开更多
基金National Key Research and Development Program of China(2017YFA0303403)Shanghai Science and Technology Innovation Action Plan(19JC1416700)National Natural Science Foundation of China(62074056,61974042,11774092)。
基金supported by National Natural Science Foundation of China(Grant No.52072327,62074052,61874159)Zhongyuan Thousand Talents(Zhongyuan Scholars)Program of Henan Province(202101510004)+6 种基金Higher Education and Teaching Reformation Project(2014SJGLX064)Academic Degrees&Graduate Education Reform Project of Henan Province(2021SJGLX060Y)Key research and development projects of Universities in Henan Province(20A140026)the Scientific Research Innovation Team of Xuchang University(2022CXTD008)Science and Technology Project of Henan Province(222102230009).L.Ding thanks the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)the National Natural Science Foundation of China(21961160720).
文摘Lead-free inorganic copper-silver-bismuth-halide materials have attracted more and more attention due to their environmental friendliness,high element abundance,and low cost.Here,we developed a strategy of one-step gas-solid-phase diffusioninduced reaction to fabricate a series of bandgap-tunable Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI bilayer films due to the atomic diffusion effect for the first time.By designing and regulating the sputtered Cu/Ag/Bi metal film thickness,the bandgap of Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI could be reduced from 2.06 to 1.78 eV.Solar cells with the structure of FTO/TiO_(2)/Cu_(a)Agm_(1)Bim_(2)I_(n)/CuI/carbon were constructed,yielding a champion power conversion efficiency of 2.76%,which is the highest reported for this class of materials owing to the bandgap reduction and the peculiar bilayer structure.The current work provides a practical path for developing the next generation of efficient,stable,and environmentally friendly photovoltaic materials.
文摘Low dimensional CuI nanomaterials were synthesized in microemulsions containing cyclohexane, Triton X 100, n pentanol and aqueous solution. The redox reaction took place in this system and the final products CuI were obtained. It′s found that the morphology of CuI could be influenced a great deal by the experimental parameters such as w0 (the molar ratio of water to surfactant), reactant concentration and the aging time. Hexagonal or shuttle like CuI flakes, nanoparticles and nanofibers could be prepared respectively under certain conditions.
文摘A layered inner tunnel supramolecular compound 1, [(CuI) 2( o phen) 2], was hydrothermally synthesized and structurally characterized by X ray crystal diffraction. It crystallizes in triclinic system, space group P 1 with a =0.775 9(2) nm, b =0.907 0(2) nm, c =0.918 94(10) nm, α =96 306(14)°, β = 104.567(16)°, γ =109.421(19)°, V =0.576 8(2) nm 3, Z=1, R=0.034 8, wR =0.092 0.