The time evolution of the linear entropy of an taking into consideration Stark shift and Kerr-like medium. atom in k-photon daynes-Cummings model is investigated The effect of both the Stark shift and Kerr-like medium...The time evolution of the linear entropy of an taking into consideration Stark shift and Kerr-like medium. atom in k-photon daynes-Cummings model is investigated The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement.展开更多
The Jaynes–Cummings model with or without rotating-wave approximation plays a major role to study the interaction between atom and light. We investigate the Jaynes–Cummings model beyond the rotating-wave approximati...The Jaynes–Cummings model with or without rotating-wave approximation plays a major role to study the interaction between atom and light. We investigate the Jaynes–Cummings model beyond the rotating-wave approximation. Treating the counter-rotating terms as periodic drivings, we solve the model in the extended Floquet space. It is found that the full energy spectrum folded in the quasi-energy bands can be described by an effective Hamiltonian derived in the highfrequency regime. In contrast to the Z_(2) symmetry of the original model, the effective Hamiltonian bears an enlarged U(1)symmetry with a unique photon-dependent atom-light detuning and coupling strength. We further analyze the energy spectrum, eigenstate fidelity and mean photon number of the resultant polaritons, which are shown to be in accordance with the numerical simulations in the extended Floquet space up to an ultra-strong coupling regime and are not altered significantly for a finite atom-light detuning. Our results suggest that the effective model provides a good starting point to investigate the rich physics brought by counter-rotating terms in the frame of Floquet theory.展开更多
We consider a theoretical scheme for entanglement transfer between a two-mode squeezed vacuum field and two initially separable atoms through intensity-dependent couplings. We find that the entanglement transfer betwe...We consider a theoretical scheme for entanglement transfer between a two-mode squeezed vacuum field and two initially separable atoms through intensity-dependent couplings. We find that the entanglement transfer between the field and the atoms has an exact period for any given squeezing. We also find that the maximum achievable entanglement of the atomic subsystem is a simple increasing function of r.For sufficiently large squeezing parameter r, it is possible for the atoms to be entangled into a Bell state at half the periodic time points.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10674038, 10604042National Basic Research Program of China under Grant No. 2006CB302901
文摘The time evolution of the linear entropy of an taking into consideration Stark shift and Kerr-like medium. atom in k-photon daynes-Cummings model is investigated The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement.
基金supported by the National Natural Science Foundation of China (Grant No. 11875195)the Foundation of Beijing Education Committees,China(Grant Nos. CIT&TCD201804074 and KZ201810028043)。
文摘The Jaynes–Cummings model with or without rotating-wave approximation plays a major role to study the interaction between atom and light. We investigate the Jaynes–Cummings model beyond the rotating-wave approximation. Treating the counter-rotating terms as periodic drivings, we solve the model in the extended Floquet space. It is found that the full energy spectrum folded in the quasi-energy bands can be described by an effective Hamiltonian derived in the highfrequency regime. In contrast to the Z_(2) symmetry of the original model, the effective Hamiltonian bears an enlarged U(1)symmetry with a unique photon-dependent atom-light detuning and coupling strength. We further analyze the energy spectrum, eigenstate fidelity and mean photon number of the resultant polaritons, which are shown to be in accordance with the numerical simulations in the extended Floquet space up to an ultra-strong coupling regime and are not altered significantly for a finite atom-light detuning. Our results suggest that the effective model provides a good starting point to investigate the rich physics brought by counter-rotating terms in the frame of Floquet theory.
基金Supported by the National Natural Science Foundation of China under Grant No 60478049, the Natural Science Foundation of Hubei Province under Grant No 2006ABB015, and the Natural Science Foundation of Huazhong Normal University.
文摘We consider a theoretical scheme for entanglement transfer between a two-mode squeezed vacuum field and two initially separable atoms through intensity-dependent couplings. We find that the entanglement transfer between the field and the atoms has an exact period for any given squeezing. We also find that the maximum achievable entanglement of the atomic subsystem is a simple increasing function of r.For sufficiently large squeezing parameter r, it is possible for the atoms to be entangled into a Bell state at half the periodic time points.