期刊文献+
共找到61,426篇文章
< 1 2 250 >
每页显示 20 50 100
ONECUT2高表达介导胃癌复发患者5-FU化疗耐药
1
作者 朱海峰 陈述 +1 位作者 龙卫国 王旭 《江苏大学学报(医学版)》 CAS 2024年第1期19-24,共6页
目的:探究One cut结构域家族成员2(ONECUT2)是否可以作为对5-FU耐药的胃癌复发患者的治疗靶点。方法:利用癌症基因组图谱(TCGA)数据库分析ONECUT2基因在胃癌患者及胃癌复发患者的表达情况。利用基因集富集分析(GSEA)评估TCGA数据库中ONE... 目的:探究One cut结构域家族成员2(ONECUT2)是否可以作为对5-FU耐药的胃癌复发患者的治疗靶点。方法:利用癌症基因组图谱(TCGA)数据库分析ONECUT2基因在胃癌患者及胃癌复发患者的表达情况。利用基因集富集分析(GSEA)评估TCGA数据库中ONECUT2表达量与药物代谢相关生物学过程的相关性。利用CCK-8细胞毒性实验评估胃癌细胞敲低或过表达ONECUT2对5-FU的耐药情况。分析30例胃癌术后复发患者ONECUT2表达量与5-FU治疗效果的相关性。结果:TCGA数据库分析显示,在经受过化疗且复发的胃癌患者中,ONECUT2高表达的患者无病间隔期(disease-free interval,DFI)更短。GSEA分析结果表明,ONECUT2高表达与异生药物代谢通路呈正相关,这提示可能与胃癌患者的耐药相关。体外实验中,敲低ONECUT2降低胃癌细胞对5-FU的半数抑制浓度(IC_(50))值;反之,过表达ONECUT2增加细胞对5-FU的IC_(50)值。30例胃癌复发患者对5-FU的药物敏感性与ONECUT2表达量相关。结论:胃癌复发患者的ONECUT2表达量更高,ONECUT2高表达与胃癌复发患者的5-FU耐药相关,可能是潜在的治疗靶点。 展开更多
关键词 One cut结构域家族成员2 胃癌复发 5-FU耐药 GSEA 细胞毒性 半数抑制浓度
下载PDF
Precipitates Generation Mechanism and Surface Quality Improvement for Aluminum Alloy 6061 in Diamond Cutting
2
作者 王海龙 DENG Wenping 王素娟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期150-159,共10页
To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the p... To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061. 展开更多
关键词 Al6061 PRECIPITATES aging treatment diamond cutting surface roughness
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables
3
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Performances of a Stinger PDC cutter breaking granite: Cutting force and mechanical specific energy in single cutter tests 被引量:1
4
作者 Chao Xiong Zhong-Wei Huang +4 位作者 Huai-Zhong Shi Rui-Yue Yang Gang Wu Han Chen Wen-Hao He 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1087-1103,共17页
The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive ... The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter. 展开更多
关键词 Stinger PDC cutter cutting force Mechanical specific energy Single cutter tests
下载PDF
Experimental investigation on the cuttings formation process and its relationship with cutting force in single PDC cutter tests
5
作者 Xian-Wei Dai Zhong-Wei Huang +3 位作者 Tao Huang Peng-Ju Chen Huai-Zhong Shi Shuang Yan 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1779-1787,共9页
The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure proce... The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure process.However,they were treated as two separate parameters in previous publications.In this study,through a series of rock block cutting tests,the relationship between them was investigated to obtain an in-depth understanding of the formation of cuttings.In addition,to validate the standpoints obtained in the aforementioned experiments,rock sheet cutting tests were conducted and the rock failure process was monitored by a high-speed camera frame by frame.The cutting force was recorded with the same sampling rate as the camera.By this design,every sampled point of cutting force can match a picture captured by the camera,which reflects the interaction between the rock and the cutter.The results indicate that the increase in cutting depth results in a transition of rock failure modes.At shallow cutting depth,ductile failure dominates and all the cuttings are produced by the compression of the cutter.The corresponding cutting force fluctuates slightly.However,beyond the critical depth,brittle failure occurs and chunk-like cuttings appear,which leads to a sharp decrease in cutting force.After that,the generation of new surface results in a significant decrease in actual cutting depth,a parameter proposed to reflect the interaction between the rock and the cutter.Consequently,ductile failure dominates again and a slight fluctuation of cutting force can be detected.As the cutter moves to the rock,the actual cutting depth gradually increases,which results in the subsequent generation of chunk-like cuttings.It is accompanied by an obvious cutting force drop.That is,ductile failure and brittle failure,one following another,present at large cutting depth.The transition of rock failure mode can be correlated with the variation of cutting force.Based on the results of this paper,the real-time monitoring of torque may be helpful to determine the efficiency of PDc bits in the downhole. 展开更多
关键词 Rock breaking cutting force PDC cutter cutTINGS
下载PDF
Experimental Investigation of Material Removal in Elliptical Vibration Cutting of Cortical Bone
6
作者 Wei Bai Yuhao Zhai +5 位作者 Jiaqi Zhao Guangchao Han Linzheng Ye Xijing Zhu Liming Shu Dong Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期106-115,共10页
To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introdu... To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy. 展开更多
关键词 Elliptical vibration cutting Cortical bone Material removal Chip formation Chip morphology Fracture propagation cutting force OSTEOTOMY
下载PDF
Prediction of Wearing of Cutting Tools Using Real Time Machining Parameters and Temperature Using Rayleigh-Ham Method
7
作者 Jean Nyatte Nyatte Fabrice Alban Epee +3 位作者 Wilba Christophe Kikmo Samuel Batambock Claude Valéry Ngayihi Abbe Robert Nzengwa 《Modern Mechanical Engineering》 2023年第2期35-54,共20页
Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determin... Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determining cutting tools lifespan, but most of the existing models don’t take into account the cutting temperature. In this work, the theoretical and experimental results of a dynamic study of metal machining against cutting temperature of a treated steel of grade S235JR with a high-speed steel tool are provided. This study is based on the analysis of two complementary approaches, an experimental approach with the measurement of the temperature and on the other hand, an approach using modeling. Based on unifactorial and multifactorial tests (speed of cut, feed, and depth of cut), this study allowed the highlighting of the influence of the cutting temperature on the machining time. To achieve this objective, two specific approaches have been selected. The first was to measure the temperature of the cutting tool and the second was to determine the wear law using Rayleigh-Ham dimensional analysis method. This study permitted the determination of a law that integrates the cutting temperature in the calculations of the lifespan of the tools during machining. 展开更多
关键词 MACHINING cutting Temperature Modeling WEAR cutting Tool
下载PDF
Stability control measures for roof cutting and NPR supporting of mining roadways in fault areas of kilometre-deep coal mine 被引量:1
8
作者 SUN Xiao-ming WANG Jian +5 位作者 ZHANG Yong ZHAO Wen-chao GUO Zhi-biao HE Man-chao CHEN Feng MIAO Cheng-yu 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3051-3065,共15页
The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cut... The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cutting roof+NPR anchor cable"(PSCR-NPR),is subjected to scrutiny through theoretical analysis,numerical modelling,and field trials.Furthermore,a comprehensive analysis is undertaken to evaluate the stability control mechanism of this particular technology.The study provides evidence that the utilization of deep-hole directional energy-concentrated blasting facilitates the attainment of directional roof cutting in roadways.The aforementioned procedure leads to the formation of a uniform structural surface on the roof of the roadway and causes modifications in the surrounding geological formation.The examination of the lateral abutment pressure and shear stress distribution,both prior to and subsequent to roof cutting,indicates that the implementation of pre-splitting techniques leads to a noteworthy reduction in pressure.The proposition of incorporating the safety factor Q for roof cutting height is suggested as a method to augment comprehension of the pressure relief phenomenon in the field of engineering.The analysis of numerical simulation has indicated that the optimal pressure relief effect of a mining roadway in a fault area is attained when the value of Q is 1.8.The NPR anchor cable exhibits noteworthy characteristics,including a high level of prestress,continuous resistance,and substantial deformation.After the excavation of the roadway,a notable reduction in radial stress occurs,leading to the reinstatement of the three-phase stress state in the surrounding rock.This restoration is attributed to the substantial prestress exerted on the radial stress.The termination point of the NPR anchor cable is strategically positioned within a stable rock formation,allowing for the utilization of the mechanical characteristics of the deep stable rock mass.This positioning serves to improve the load-bearing capacity of the surrounding rock.The mining roadway within the fault region of Daqiang Coal Mine is outfitted with the PSCR-NPR technology.The drop in shear stress experienced by the rock surrounding the roadway is estimated to be around 30%,whilst the low-stress region of the mining roadway extends by a factor of approximately 5.5.The magnitude of surface displacement convergence experiences a decrease of approximately 45%-50%.The study’s findings provide useful insights regarding the stable of mining roadway in characterized by fault zones. 展开更多
关键词 Kilometre-deep mine FAULT Mining roadway Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Numerical simulation of materials-oriented ultra-precision diamond cutting:review and outlook 被引量:1
9
作者 Liang Zhao Junjie Zhang +3 位作者 Jianguo Zhang Houfu Dai Alexander Hartmaier Tao Sun 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期1-21,共21页
Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on c... Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on cutting mechanisms is crucial for promoting the capability of the machining technique,numerical simulation methods at different length and time scales act as important supplements to experimental investigations.In this work,we present a compact review on recent advancements in the numerical simulations of material-oriented diamond cutting,in which representative machining phenomena are systematically summarized and discussed by multiscale simulations such as molecular dynamics simulation and finite element simulation:the anisotropy cutting behavior of polycrystalline material,the thermo-mechanical coupling tool-chip friction states,the synergetic cutting responses of individual phase in composite materials,and the impact of various external energetic fields on cutting processes.In particular,the novel physics-based numerical models,which involve the high precision constitutive law associated with heterogeneous deformation behavior,the thermo-mechanical coupling algorithm associated with tool-chip friction,the configurations of individual phases in line with real microstructural characteristics of composite materials,and the integration of external energetic fields into cutting models,are highlighted.Finally,insights into the future development of advanced numerical simulation techniques for diamond cutting of advanced structured materials are also provided.The aspects reported in this review present guidelines for the numerical simulations of ultra-precision mechanical machining responses for a variety of materials. 展开更多
关键词 diamond cutting ultra-smooth surface material-oriented physics-based simulation model molecular dynamics finite element
下载PDF
Friction behaviors in the metal cutting process:state of the art and future perspectives 被引量:1
10
作者 Xiaoliang Liang Zhanqiang Liu +2 位作者 Bing Wang Chunjin Wang Chi Fai Cheung 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期22-58,共37页
Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool... Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces.The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality.This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives.First,the cutting friction phenomena under extreme conditions,such as high temperature,large strain/strain rates,sticking–sliding contact states,and diverse cutting conditions are analyzed.Second,the theoretical models of cutting friction behaviors and the application of simulation technology are discussed.Third,the factors that affect friction behaviors are analyzed,including material matching,cutting parameters,lubrication/cooling conditions,micro/nano surface textures,and tool coatings.Then,the consequences of the cutting friction phenomena,including tool wear patterns,tool life,chip formation,and the machined surface are analyzed.Finally,the research limitations and future work for cutting friction behaviors are discussed.This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology. 展开更多
关键词 cutting process friction behaviors material removal process contact condition
下载PDF
Experimental research and application of cold cutting to hot stamping parts based on multiphase microstructure 被引量:1
11
作者 WU Yanjun LUO Aihui WANG Chenlei 《Baosteel Technical Research》 CAS 2023年第3期1-8,共8页
Among the bottlenecks that hinder the improvement of the production efficiency of hot stamping are high strength and difficulty in edge cutting and hole punching.Starting from the preparation of hot stamping multiphas... Among the bottlenecks that hinder the improvement of the production efficiency of hot stamping are high strength and difficulty in edge cutting and hole punching.Starting from the preparation of hot stamping multiphase microstructure materials,this paper developed a plate quenching die system with controllable surface temperature and prepared four types of hot stamping plates with different martensite volume fractions.Then,straight edge cold cutting experiments were performed to study the influence of cutting clearance and cutting force on fracture quality.The results show that the bright zone is the largest when the cutting clearance is 0.14 mm,and the cutting experience coefficient of the hot stamping sheet with each martensite volume fraction is obtained when the cutting clearance is 0.14 mm.The research results of this paper were applied to the production of hot stamping parts. 展开更多
关键词 hot stamping cold cutting multiphase microstructure
下载PDF
Effects of carcass weight, sex and breed composition on meat cuts and carcass trait in finishing pigs
12
作者 XIE Lei QIN Jiang-tao +5 位作者 RAO Lin CUI Deng-shuai TANG Xi XIAO Shi-jun ZHANG Zhi-yan HUANG Lu-sheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1489-1501,共13页
Pork cutting is a very important processing in promoting economic appreciation across the swine business chain. The goal of this research is to determine the proportion and weight of meat cuts, as well as to analyze t... Pork cutting is a very important processing in promoting economic appreciation across the swine business chain. The goal of this research is to determine the proportion and weight of meat cuts, as well as to analyze the effects of carcass weight, sex and breed composition on meat cuts. Simultaneously, we investigate the correlation between meat cuts, carcass traits and meat quality traits. To assess 17 meat cut traits, 12 carcass traits and 6 meat quality traits, we sample 2 012 pigs from four breeds, including Landrace(LD), Yorkshire(YK), Landrace Yorkshire(LY), and Duroc Landrace Yorkshire(DLY). The results showed that carcass weight, sex and breed composition have significant effects on the weight and proportion of most meat cuts. The proportion of cuts for muscle and bone decrease as carcass weight grows, whereas the proportion of cuts for fat increases. Moreover, the thickness of four-point backfat was significantly increasing(P<0.001) with increase of carcass weights, indicating that large amount of intaking energy in the late finishing stage was used for fat deposition. Besides, the proportion of Shoulder cut(SC) and Back fat(BF) in barrows was significantly higher(P<0.001) than that in sows, whereas the Leg cut(LC) showed the opposite trend. The Loin(LO) proportion and Loin muscle area(LMA) of barrows were significantly lower(P<0.001), but the proportion of fat areas in the image(PFAI) and visual marbling score(VMS) were significantly higher(P<0.001) than those of sows, respectively. In terms of breeds, LD had the longest straight carcass length, significantly longer(P<0.001) than the other three breeds, which partially explains why LD had the largest proportion of the Middle cut(MC). Moreover, the proportion of SC in DLY was the highest. Last but not least, the correlations between the proportions of most meat cuts, and also between meat cuts and meat quality or carcass traits were low or not significant(P>0.05). The effects of carcass weight, sex and breed composition on the meat cuts, meat quality and carcass traits are breed and growth stage dependent. It also reflects the asynchrony of the growth curve between different sexes. Our results laid an important foundation for breeding pig carcass cuts and composition. 展开更多
关键词 CARCASS MEAT cutS CARCASS TRAITS commercial pig MEAT quality
下载PDF
改进Grab Cut算法的复合绝缘子憎水性评估
13
作者 毕茂强 帅垭灵 +4 位作者 胡秀雷 杨忠平 杨俊伟 江天炎 陈曦 《重庆理工大学学报(自然科学)》 CAS 北大核心 2023年第5期218-227,共10页
为快速、准确地识别复合绝缘子伞裙的憎水性,提出了一种基于改进Grab Cut算法的复合绝缘子憎水性评估方法,在Grab Cut的基础上引入自适应对比度增强算法来解决图像光照不均匀问题和自适应平滑滤波算法解决图像噪声问题。在伞裙表面滴下2... 为快速、准确地识别复合绝缘子伞裙的憎水性,提出了一种基于改进Grab Cut算法的复合绝缘子憎水性评估方法,在Grab Cut的基础上引入自适应对比度增强算法来解决图像光照不均匀问题和自适应平滑滤波算法解决图像噪声问题。在伞裙表面滴下20μL的液滴,使用改进后的Grab Cut算法对电晕老化样品、自然积污硅橡胶样品、不同憎水性硅橡胶样品和实际运行工况复合绝缘子进行液滴面积识别。结果表明:算法能降低由于复合绝缘子运行时伞裙表面积污产生的图像噪声,且能较为准确地分割液滴图像与复合绝缘子背景,验证了其有效性和可靠性;可对人工加速老化和自然老化样品液滴面积变化进行测算,并对照静态接触角法,实现复合绝缘子憎水性的评估。 展开更多
关键词 硅橡胶 Grab cut 憎水性 液滴面积 复合绝缘子
下载PDF
Cuttings transport: Back reaming analysis based on a coupled layering-sliding mesh method via CFD
14
作者 Na Zhu Shi-Dong Ding +2 位作者 Xiao-Lei Shi Wen-Jun Huang De-Li Gao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3673-3686,共14页
Inadequate hole cleaning is one of the main reasons for inefficient operations in extended-reach drilling.The mechanism of cuttings transport under the back reaming operation,which is frequently adopted to remove the ... Inadequate hole cleaning is one of the main reasons for inefficient operations in extended-reach drilling.The mechanism of cuttings transport under the back reaming operation,which is frequently adopted to remove the cuttings,has been investigated in this study.To this end,a coupled layering-sliding mesh method with the Eulerian-Granular approach has been established innovatively.The dynamic layering method has been employed to simulate the axial motion of the pipe,whereas the sliding mesh method has been used to simulate the pipe rotation.The back reaming operation of a connector-furnished pipe has been simulated,and the sensitive parameter analysis has been conducted.The results thus obtained demonstrate that the increase in the initial bed height,inclination,and the diameter and length of the connector causes a significant increase in the cuttings concentration.In addition,the cuttings concentration is observed to decrease significantly with the pipe rotation speed.Furthermore,two main factors contribute towards the cuttings accumulation around the connector,namely,the difference in the cross-sectional area and the pushing effect of the connector—like a“bulldozer”.The“bulldozer”effect of the connector dominates when the tripping velocity is significant compared to the velocity of the cuttings.Conversely,the effect of the difference in the cross-sectional area becomes the leading factor for cuttings accumulation.The“bulldozer”effect of the connector causes a more severe impact on hole cleaning.In both cases,increasing the tripping velocity only mildly affects the cuttings concentration.It is therefore suggested that the tripping velocity should be slower than that of the sand during the back reaming operation.Furthermore,increased fluid velocity might lead to a higher accumulated cuttings concentration around the connector when the cuttings bed has not entirely passed through the connector.A significant flow rate can be safely applied after the cuttings have passed through the connector furnished with a large diameter,such as the bottom hole assembly.This exploration serves as an essential guide to predicting and controlling tight spots while back reaming. 展开更多
关键词 Drill cuttings transport Back reaming Layering-sliding mesh Hole cleaning CONNECTOR
下载PDF
Genetic dissection and genomic prediction for pork cuts and carcass morphology traits in pig
15
作者 Lei Xie Jiangtao Qin +6 位作者 Lin Rao Dengshuai Cui Xi Tang Liqing Chen Shijun Xiao Zhiyan Zhang Lusheng Huang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第6期2345-2362,共18页
Background As pre-cut and pre-packaged chilled meat becomes increasingly popular,integrating the carcasscutting process into the pig industry chain has become a trend.Identifying quantitative trait loci(QTLs)of pork c... Background As pre-cut and pre-packaged chilled meat becomes increasingly popular,integrating the carcasscutting process into the pig industry chain has become a trend.Identifying quantitative trait loci(QTLs)of pork cuts would facilitate the selection of pigs with a higher overall value.However,previous studies solely focused on evaluating the phenotypic and genetic parameters of pork cuts,neglecting the investigation of QTLs influencing these traits.This study involved 17 pork cuts and 12 morphology traits from 2,012 pigs across four populations genotyped using CC1 PorcineSNP50 BeadChips.Our aim was to identify QTLs and evaluate the accuracy of genomic estimated breed values(GEBVs)for pork cuts.Results We identified 14 QTLs and 112 QTLs for 17 pork cuts by GWAS using haplotype and imputation genotypes,respectively.Specifically,we found that HMGA1,VRTN and BMP2 were associated with body length and weight.Subsequent analysis revealed that HMGA1 primarily affects the size of fore leg bones,VRTN primarily affects the number of vertebrates,and BMP2 primarily affects the length of vertebrae and the size of hind leg bones.The prediction accuracy was defined as the correlation between the adjusted phenotype and GEBVs in the validation population,divided by the square root of the trait’s heritability.The prediction accuracy of GEBVs for pork cuts varied from 0.342 to 0.693.Notably,ribs,boneless picnic shoulder,tenderloin,hind leg bones,and scapula bones exhibited prediction accuracies exceeding 0.600.Employing better models,increasing marker density through genotype imputation,and pre-selecting markers significantly improved the prediction accuracy of GEBVs.Conclusions We performed the first study to dissect the genetic mechanism of pork cuts and identified a large number of significant QTLs and potential candidate genes.These findings carry significant implications for the breeding of pork cuts through marker-assisted and genomic selection.Additionally,we have constructed the first reference populations for genomic selection of pork cuts in pigs. 展开更多
关键词 Carcass morphology traits Genomic selection Genotype imputation GWAS Pork cuts
下载PDF
Analysis of cut vertex in the control of complex networks
16
作者 周洁 袁诚 +2 位作者 钱祖燏 汪秉宏 聂森 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期574-579,共6页
The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect ... The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect the network. Despite their fundamental importance, the influence of the cut vertexes on network control is still uncertain. Here, we reveal the relationship between the cut vertexes and the driver nodes, and find that the driver nodes tend to avoid the cut vertexes.However, driving cut vertexes reduce the energy required for controlling complex networks, since cut vertexes are located near the middle of the control chains. By employing three different node failure strategies, we investigate the impact of cut vertexes failure on the energy required. The results show that cut vertex failures markedly increase the control energy because the cut vertexes are larger-degree nodes. Our results deepen the understanding of the structural characteristic in network control. 展开更多
关键词 cut vertex CONTROLLABILITY control energy structural characteristic complex networks
下载PDF
Cutting Force Fluctuation Suppression and Error Homogenization of Noncircular Gear Hobbing Based on the Tool Shifting Method
17
作者 Dazhu Li Jiang Han +1 位作者 Xiaoqing Tian Lian Xia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期167-179,共13页
The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing proc... The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing process.In this paper,a hobbing machining model with tool-shifting characteristics was proposed to solve the problems of cutting force fluctuation and inconsistency of tooth profile envelope accuracy at different positions of the pitch curve in noncircular gear hobbing.Based on the unit cutting force coefficient method,the undeformed chip volume generated by interrupted cutting was used to characterize the fluctuation trend of the hobbing force.The fluctuation characteristics of the cutting force generated by different hobbing models were compared and analyzed.Using the equivalent gear tooth and hob slotting numbers,an analysis model of the tooth profile envelope error of the noncircular gear was constructed.Subsequently,the tooth profile envelope errors at different positions of the pitch curve were compared and analyzed based on the constructed model.The transmission structure of the electronic gearbox was constructed based on the proposed hobbing model,and the hobbing experiment was conducted based on the selfdeveloped noncircular gear CNC hobbing system.This paper proposes a hobbing method that can effectively suppress the fluctuation of the peak and whole circumference cutting force and reduce the maximum envelope error of the whole circumference gear teeth. 展开更多
关键词 Noncircular gear Gear hobbing cutting force Envelope error Machining model
下载PDF
Theoretical and numerical simulation investigation of deep hole dispersed charge cut blasting
18
作者 Chengxiao Li Renshu Yang +3 位作者 Yanbing Wang Yiqiang Kang Yuantong Zhang Pin Xie 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期87-107,共21页
Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production ... Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways. 展开更多
关键词 Deep hole blasting cut blasting Dispersed charge SPH-FEM Digital electronic detonator
下载PDF
Nanometric Cutting Mechanism of Cerium-Lanthanum Alloy
19
作者 Chenyu Zhao Min Lai Fengzhou Fang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期155-166,共12页
Cerium-lanthanum alloy is widely used in the green energy industry,and the nanoscale smooth surface of this material is in demand.Nanometric cutting is an effective approach to achieving the ultra-precision machining ... Cerium-lanthanum alloy is widely used in the green energy industry,and the nanoscale smooth surface of this material is in demand.Nanometric cutting is an effective approach to achieving the ultra-precision machining surface.Molecular dynamics(MD)simulation is usually used to reveal the atomic-scale details of the material removal mechanism in nanometric cutting.In this study,the effects of cutting speed and undeformed chip thickness(UCT)on cutting force and subsurface deformation of the cerium-lanthanum alloy during nanometric cutting are analyzed through MD simulation.The results illustrate that the dislocations,stacking faults,and phase transitions occur in the subsurface during cutting.The dislocations are mainly Shockley partial dislocation,and the increase of temperature and pressure during the cutting process leads to the phase transformation ofγ-Ce(FCC)intoβ-Ce(HCP)andδ-Ce(BCC).β-Ce is mainly distributed in the stacking fault area,whileδ-Ce is distributed in the boundary area between the dislocation atoms andγ-Ce atoms.The cutting speed and UCT affect the distribution of subsurface damage.A thicker deformed layer including dislocations,stacking faults and phase-transformation atoms on the machined surface is generated with the increase in the cutting speed and UCT.Simultaneously,the cutting speed and UCT significantly affect the cutting force,material removal rate,and generated subsurface state.The fluctuations in the cutting force are related to the generation and disappearance of dislocations.This research first studied the nanometric cutting mechanism of the cerium-lanthanum ally,providing a theoretical basis for the development of ultra-precision machining techniques of these materials. 展开更多
关键词 Cerium-lanthanum alloy Molecular dynamics simulation Nanometric cutting Subsurface damage
下载PDF
Microstructure Transformation and Refinement Mechanism of Undercooled Cu-Ni-Co Alloy Based on Simulation of Critical Cutting Speed in Ultrasonic Machining
20
作者 HE Xiaoyu HOU Kai +2 位作者 XU Xuguang TANG Cheng ZHU Xijing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1472-1483,共12页
Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change o... Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(ΔT)was systematically studied.It is found that the two alloys experience the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,but the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscopy(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it could be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.On this basis,in the processing of copper base alloys,there will be serious work hardening phenomenon and machining hard problem of consciousness problems caused by excessive cutting force.A twodimensional orthogonal turning finite element model was established using ABAQUS software to analyze the changes in cutting speed and tool trajectory in copper based alloy ultrasonic elliptical vibration turning.The results show that in copper based alloy ultrasonic elliptical vibration turning,cutting process parameters have a significant impact on cutting force.Choosing reasonable process parameters can effectively reduce cutting force and improve machining quality. 展开更多
关键词 rapid solidification UNDERCOOLING microstructure refinement structure ultrasonic elliptical vibration turning cutting speed finite element analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部