50mm 3C-SiC epilayers are grown on (100) and (111) Si substrates in a newly developed horizontal lowpressure hot-wall CVD reactor under different growth pressures and flow rates of H2 carrier gas. The structure,el...50mm 3C-SiC epilayers are grown on (100) and (111) Si substrates in a newly developed horizontal lowpressure hot-wall CVD reactor under different growth pressures and flow rates of H2 carrier gas. The structure,electrical properties, and thickness uniformity of the 3C-SiC epilayers are investigated by X-ray diffraction (XRD) ,sheet resistance measurement, and spectroscopic ellipsometry. XRD patterns show that the 3C-SiC films have excellent crystallinity. The narrowest full widths at half maximum of the SIC(200) and (111) peaks are 0.41° and 0.21°, respectively. The best electrical uniformity of the 50mm 3C-SiC films obtained by sheet resistance measurement is 2.15%. A σ/mean value of ± 5.7% in thickness uniformity is obtained.展开更多
GaN microcrystalline grains were grown by hot-wall chemical vapor deposition on Si(111)substrate.These grains with diameters of 2-4 μm were detected by scanning electron microscopy.X-ray diffraction,Fourier transform...GaN microcrystalline grains were grown by hot-wall chemical vapor deposition on Si(111)substrate.These grains with diameters of 2-4 μm were detected by scanning electron microscopy.X-ray diffraction,Fourier transformation infrared transmission spectroscopy and photoluminescence were used to analyze the structure, composition and the optical properties of the samples.The results show that the microcrystalline grains are hexagonal wurtzite GaN,and the property of the grains was greatly affected by the growth time.展开更多
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get highly qualitical 4H-SiC epilayers.Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates is performed at ...Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get highly qualitical 4H-SiC epilayers.Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates is performed at 1500℃ with a pressure of 1.3×103Pa by using the step-controlled epitaxy.The growth rate is controlled to be about 1.0μm/h.The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope,atomic force microscopy (AFM),X-ray diffraction,Raman scattering,and low temperature photoluminescence (LTPL).N-type 4H-SiC epilayers are obtained by in-situ doping of NH 3 with the flow rate ranging from 0.1 to 3sccm.SiC p-n junctions are obtained on these epitaxial layers and their electrical and optical characteristics are presented.The obtained p-n junction diodes can be operated at the temperature up to 400℃,which provides a potential for high-temperature applications.展开更多
A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes, carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which ...A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes, carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which are located on the two electrodes. The CNT-based sensing element is fabricated by CVD (chemical vapor deposition)-direct-growth on micro- electrodes. The sensing model and measurement method of electromechanical property are also presented. Finally, the voltage-current characteristics are measured, which show that the CNT-based sensing element has good electrical properties.展开更多
The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic ...The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.展开更多
文摘50mm 3C-SiC epilayers are grown on (100) and (111) Si substrates in a newly developed horizontal lowpressure hot-wall CVD reactor under different growth pressures and flow rates of H2 carrier gas. The structure,electrical properties, and thickness uniformity of the 3C-SiC epilayers are investigated by X-ray diffraction (XRD) ,sheet resistance measurement, and spectroscopic ellipsometry. XRD patterns show that the 3C-SiC films have excellent crystallinity. The narrowest full widths at half maximum of the SIC(200) and (111) peaks are 0.41° and 0.21°, respectively. The best electrical uniformity of the 50mm 3C-SiC films obtained by sheet resistance measurement is 2.15%. A σ/mean value of ± 5.7% in thickness uniformity is obtained.
文摘GaN microcrystalline grains were grown by hot-wall chemical vapor deposition on Si(111)substrate.These grains with diameters of 2-4 μm were detected by scanning electron microscopy.X-ray diffraction,Fourier transformation infrared transmission spectroscopy and photoluminescence were used to analyze the structure, composition and the optical properties of the samples.The results show that the microcrystalline grains are hexagonal wurtzite GaN,and the property of the grains was greatly affected by the growth time.
文摘Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get highly qualitical 4H-SiC epilayers.Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates is performed at 1500℃ with a pressure of 1.3×103Pa by using the step-controlled epitaxy.The growth rate is controlled to be about 1.0μm/h.The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope,atomic force microscopy (AFM),X-ray diffraction,Raman scattering,and low temperature photoluminescence (LTPL).N-type 4H-SiC epilayers are obtained by in-situ doping of NH 3 with the flow rate ranging from 0.1 to 3sccm.SiC p-n junctions are obtained on these epitaxial layers and their electrical and optical characteristics are presented.The obtained p-n junction diodes can be operated at the temperature up to 400℃,which provides a potential for high-temperature applications.
基金This work is partially granted by National Natural Science Foun-dation of China (No.50505018)Specialized Research Fund forthe Doctoral Program of Higher Education (No. 20030003024)China Postdoctoral Science Foundation Grant (No.2005038068).
文摘A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes, carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which are located on the two electrodes. The CNT-based sensing element is fabricated by CVD (chemical vapor deposition)-direct-growth on micro- electrodes. The sensing model and measurement method of electromechanical property are also presented. Finally, the voltage-current characteristics are measured, which show that the CNT-based sensing element has good electrical properties.
文摘The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.